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PROJECT SUMMARY 

The objective of this project is to investigate the potential use of 
logistic regression in rainfall estimation from satellite 
measurements. Satellite measurements provide covariate informations 
in terms of radiances from different remote sensors. The logistic 
regression technique can effectively accommodate many covariates and 
test their significance in the estimation. The outcome from the 
logistic model is the probability that the rainrate of a satellite 
pixel is above certain threshold. By varying the thresholds, a 
rainrate histogram can be obtained and from which the mean and 
variance estimated. 

A logistic model is developed and applied to rainfall data 
collected during GATE, using as covariates the fractional rain area 
and a radiance measurement which is deduced from a microwave 
temperature-rainrate relation. It is demonstrated that the fractional 
rain area is an important covariate in the model, consistent with the 
use of the so-called 'Area Time Integral' in estimating total rain 
volume in other studies. 

In order to calibrate the logistic model, simulated rain fields 
generated by rainfield models with prescribed parameters are needed. 
A strigent test of the logistic model is its ability in recovering the 
prescribed parameters of simulated rain fields. A rain field 
simulation model which preserves the fractional rain area and 
lognormality of rainrates as found in GATE is developed. The 
simulated rain fields are quite realistic. A stochastic regression 
model of branching and immigration whose solutions are lognormally 
distributed in some asymptotic limits has also been developed. This 
model makes no assumption about the law of proportionate effect which 
is often quoted to achieve lognormality. 

This study has demonstrated the effectiveness of the logistic 
technique in examining a large number of covariates and in testing 
their significance. By identifying important covariates and the way 
in which they enter the estimation procedure, this technique will be 
useful in the design of a system of remote sensors for the measurement 
of rainfall from space and in the development of satellite rainfall 
retrieval algorithms. 



I. Qbiective 

The Earth distinguishes itself from other planets in the presence 
of water substances. The heat stored in various forms of water 
substances, the heat transported by atmospheric water vapor and by the 
oceans, the heat released during the transformations between the 
different phases have shaped Earth's climate to a large extent. Water 
vapor is the working substance of Earth's atmosphere: created to 
remove excess heat from the oceans and over land in the form of 
evaporation; participates in the radiative heating of the atmosphere 
by emission in the long wave regime of the atmospheric spectrum; 
transports excess heat in the tropics and deposits it in the high 
latitudes thus modulating the extreme heat and cold on Earth. In the 
final stage of this branch of the water cycle, it changes phase and is 
deposited in the form of precipitation over the Earth's surface. 

Because of the scale of variability, precipitation is probably 
one of the least known but yet most sensitive parameter in the water 
budget over land and oceans (Miller 1977, Laevastu, et al., 1969). A 
knowledge of the amount and distribution of precipitation is crucial 
to our understanding of the large scale dynamics of the oceans and 
atmosphere. Strong empirical as well as theoretical evidence have 
suggested that condensational heating of the tropical atmosphere, as 
indicated by the amount of precipitation, is instrumental to 
circulation anomalies world wide (Horel and Wallace 1981, Gill 1982). 

Precipitation and the antecedent latent heat release has been 
incorporated into General Circulation Models (GCM's) of the Earth's 
atmosphere for some time, but the intensity and distribution is still 
poorly modeled. A detailed global rainfall data set is therefore 
needed to calibrate the GCM's for mean and anomalous conditions. To 
accomplish this, a satellite rainfall monitoring mission to measure 
precipitation over the tropics, the Tropical Rainfall Measuring 
Mission (TRMM), has been proposed (Theon, et al., 1986). The 
objective is to obtain at least 3 years of monthly mean rainfall data 
over the tropical regions. 

To achieve this, a retrieval algorithm by which satellite 
measurements can be converted to rainfall data is needed. The 
ultimate objective of our work is to develop such an algorithm. The 
immediate objective is to investigate the potential use of logistic 
regression in rainfall estimation from space. Since rainfall is not 
directly measured, the information available are covariate information 
in terms of radiances from satellite sensors. The logistic regression 
technique is especially suited for this purpose since it can 
effectively accommodate a large number of covariates and readily test 
their significance. A secondary objective is to study the statistics 
of rain fields which will be useful in interpreting problems such as 
the "beam filling" and estimate biases are due to sampling. 
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In section 2, the techniques of estimating rainfall from space 
are briefly reviewed. The need for multispectral estimation 
techniques is stressed. Section 3 discusses the logistic model and 
demonstrates its use in identifying important covariates. The 
scenario of concommittant observations of microwave and fractional 
rain area data, which may be obtained from visible or infrared 
measurements, is investigated. A major finding is the importance of 
rain area in estimating total rainfall. Since observation of the 
fractional area is dependent on the foot print size of the 
observation, the statistics of rainfall fields are examined in section 
4 using the GATE data as an example. To calibrate the logistic 
technique, a simple rain field simulation model and a point process 
regression model which exhibit statistical properties of the GATE 
rainfall data are developed in section 4 .  The regression model is 
capable of producing rainfall rate with a lognormal distributions in 
some asymptotic limits. These limiting conditions are satisfied in 
the GATE data for large area averaged conditions. The dependence of 
statistical parameters in rain fields on scale is addressed in section 
5. Section 6 summarizes our findings and makes recommendations for 
future work. 

2. &view of S a w t e  Es-on Teem 

The need for satellite monitoring of global rainfall has been 
stressed by Atlas and Thiele (1982) and Austin and Geotis (1980). 
Barrett and Martin (1981) have reviewed the various estimation 
techniques. Another good source of reference is contained in the 
preprint volume of the second conference of satellite meteorology in 
which two sessions are devoted to the estimation of rainfall from 
space. 

The source of satellite data is basically derived from three 
regions in the atmospheric spectrum: the visible (VIS), infrared 
(IR), and microwave windows. The techniques which use information in 
the visible part of the spectrum rely on identifying cloud types and 
assigning rainrates to them. This cloud type-rain rate relation is 
dependent on the local climatology, and hence, this method must be 
calibrated regionally. 

The infrared techniques rely on information on cloud top 
temperatures which are indicators of cloud heights. The implicit 
assumption is that the rain-bearing clouds are tall cummulus clouds. 
Arkin (1979) developed an index of precipitation which is the number 
of pixels within an area in an IR satellite imagery with temperatures 
below 235 degrees Kelvin. This index represents the fractional area 
of high convective clouds within the area. When compared with 
rainfall data measured during GATE, a correlation coefficient of 0.87 
is obtained. Arkin's index of precipitation has been adopted for 
local calibration of rainfall during the Tropical Ocean Global 
Atmosphere (TOGA) experiment. However, at middle to high latitudes, 
rainfall from large-scale low-level stratiform clouds becomes 
increasingly dominant, and this cloud area index becomes less 
effective in estimating rainfall in those regions. 
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A more direct approach relies on the radiative properties of rain 
drops in the microwave portion of the spectrum. By modeling the 
vertical structure of a rain cloud, a rainfall rate-microwave 
temperature relation can be established. Hence, a rainfall rate can 
be estimated from an observation of the microwave emission. There are 
several 

1. 

2. 

3 .  

pitfalls in this approach. 

ed P i a  of View IFOV!--Microwave measurements usually 
have large foot print sizes, and, hence, the field of view of 
the foot print is usually not filled with rain. A bias is 
introduced if the measurements from the unfilled beam is used 
to retrieve rainfall through the microwave temperature- 
rainfall rate relation. 

tion--The microwave measurements become saturated at 
high rainrates. At 19 GHz, the beam becomes saturated at 
rainrates above 15-20 mm/hr. Although only a small fraction 
of the measurements are contained in this portion of the the 
rain spectrum, the high rainrates account for a large 
fraction of the total rainfall. 

rowave T-e Rebtion--In deriving the 
rainfall rate-microwave temperature relation, a cloud model 
has to be assumed. Such a relationship is rather sensitive 
to the assumed parameters, such as profile of ice and liquid 
water content. Rather different relationships are found for 
different modeling assumptions. For example, the 
relationship presented by Wilheit, et al. (1977), showed a 
monotonic increase of microwave temperature as a function of 
rainfall rates in the range from 0 to about 15 mm/hr at 19 
GHz whereas that of Wu and Weinman (1984) shows a decrease. 

Estimation schemes which combine information form the different 
atmospheric channels, seems to yield good estimates. Lovejoy and 
Austin (1979) developed an algorithm which delineates rain areas from 
visible and infrared measurements. Radar detected rain patterns are 
used as ground truth and a statistical pattern recognition technique 
is used to establish rain area characteristics in the visible and 
infrared. Once the rain areas are calculated, the rainfall is 
obtained by multiplying the area by a climatological mean rainfall 
rate. This multi-spectral approach has had many successful 
applications and has been adopted for operational satellite rain 
estimation by the Atmospheric and Environmental Service of Canada. 

It is argued that if information from different channels are 
combined, a better estimation scheme can be developed. Since the 
resolutions of the sensors are quite different, it is necessary to 
identify the important covariates as well as the way through which 
they enter the estimation scheme. In what follows, a logistic model 
is described and the scenario of concommitant microwave IR/VIS 
observations which delineate rain area is examined. 
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. .  3 .  Zhe L o w t i c  M o a  

The logistic model is useful in determining the relationship 
between the distribution of a random variable and a set of covariates. 
It has been applied in various forms in reliability testing and the 
analysis of survival data (Cox and Oakes 1984). Detail treatment of 
the logistic model is given by Cox (1970). The model is briefly 
described below. 

Let R be the random variable which stands for rainrate and let 

z = (21, . . ., zp) 
be the vector of covariables related to R. Suppose we are interested 
in estimating the probability 

P(R&I) 

where I is a rainrate interval. Let X be defined by 

1, r in I 

0, Otherwise 
x = {  

Then 

P(RE1) = P(X E 1). 

In many respects the simplest way to express the dependence of this 
probability on explanatory variables or covariates is to postulate the 
model [Cox (1970)l. 

1 
p(x = 0 )  = ----L-------------------------- 

1 + (Po + PlZl + ' + Ppzp) e 
This is the logistic model. This model allows great flexibility in 
the choice of the covariates and in mathematical manipulations. 

The parameters are estimated by maximizing a likelihood function 
and the significance of the covariates are readily tested by a 
likelihood ratio. The interested reader is referred to our paper 
(Chiu and Kedem 1986) for a more detailed discussion. This paper is 
attached (attachment A )  with this report. 
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The scenario of a TRMM-like system of sensors which can provide 
microwave measurements and fractional rain area within a microwave 
foot print size pixel is examined. The data we use are the rainfall 
data collected during GATE. The GATE data are binned at 4 kms by 4 
kms and are given at 15 minute intervals. A detail description of the 
data is given in the next section. The microwave temperature is 
mimicked through a microwave temperature-rainfall rate relation (see 
attachment A). The microwave measurements are assumed to have a 
resolution of about 32 kms on the side, somewhat similar to the 
resolution of the Electrically Scanning Microwave Radiometer (ESMR) 
which was flown on board the Nimbus V satellite. From the 4 kms by 4 
kms rainfall rates, a temperature is computed. The temperatures of 64 
(32 /4  or 8 pixels on the side) neighboring pixels are averaged to 
obtain the microwave temperature (T). The fractional rain area with 
rainrates above 1 mm/hr (F) is obtained by counting the number of high 
resolution pixels ( 4  kms on the side) with rainrates above 1 mm/hr and 
dividing by the total number ( 6 4 )  in a large microwave pixel (32 kms 
on the side). Another index, Fi, which is the fractional area with 
rainrate in excess of 20 mm/hr, is also used. This index mimicks 
Arkin's index of high clouds which produce heavy rainfall. To test 
the usefulness of the logistic technique, another parameter, TL, is 
also included in the estimation. TL is the microwave temperature T at 
a lag of 1 time units (15 minutes). The results are summarized in 
table 2 in Chiu and Kedem (1986)(attachment A). The results show that 
the inclusion of TL does not improve the model significantly. This is 
probably due to persistence in the time series so that there is not 
much new information in TL as most of it is contained in T. The 
results also show that T is the best regressor in the model. Since T 
is derived from the rain field, this result cannot be taken literally. 
An interesting finding is the importance of F in the model. This is a 
better regressor than F1, but, when the two parameters F and Fi are 
combined, a better model is obtained. This is consistent with our 
finding about the contribution of the rain area in determining the 
total rainfall, a point which we shall return to in section 4 .  

. .  4. GATERainfall Statutics 

The fractional area of rain within a pixel is dependent on the 
pixel size and the spatial variability of the rain field. Hence, the 
structure and statistical properties of the rain field need to be 
studied. 

The study of the statistical properties of the rain field is 
based on data collected during GATE. This is one of the most 
comprehensive rain measurements made ove the ocean. 
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1. GATE Syrface Rainfall Data --The GATE is an observational 
program conducted in the summer of 1974. During three 
roughly tri-weekly periods, each termed a phase, detailed 
rainfall measurements from rain gauges and radars on an array 
of research vessels were made over an area called the 
B-scale. The center of the B-scale area is located at 8.5N, 
23.53 and encompasses an area of about 200 km in diameter. 
Arkell and Hudlow (1977) composited the radar measurements 
from ships and presented an atlas of the radar echoes at 15 
minute intervals. Patterson, et al. (1979), converted the 
radar measurements to rainrates and presented rainrate data 
in 4 by 4 km2 bins. 

2 .  ---For the height of the rain column, we used the 
constant Altitude Plan-Position Indicator (CAPPI) radar data 
taken onboard the research vessel the ggOceanographer,gi which 
was positioned at the center of the B-scale area in GATE, but 
was moved to the Southeast quadrant. The original data was 
taken from the plane position indicator (PPI) for elevation 
angle of about 1.5 to 22 degrees. Ptylowany, et al. (1979), 
converted the data from elevation-distance coordinate to 
constant altitude plane position co-ordinate, with a vertical 
resolution of about 1 km. The maximum echo height reported 
is 12 kms, i.e., at higher heights are truncated at 12  kms. 
This data covers 3 convectively active days in each phase of 
GATE. 

4 . 2  The M b e d  Distribution M o a  

An objective of TRMM is to obtain monthly averages of rainfall. 
If rainfall rates can be described by a class of statistical 
distribution, the estimation procedure can be simplified since only a 
few parameters of the distribution need to be estimated. We examined 
the GATE data and found that the rainrates can be described by a mixed 
distribution (attachment B). The mixed distribution consists of a 
finite probability of no rain and a continuous distribution for the 
rainy part. Conditional on rain, it was shown that the lognormal 
distribution provides an excellent fit to the data. A detailed 
description of the model and its application to sampling studies in 
GATE can be found in attachment B of this report. 

4 . 3  Intemttew 

Intermittency refers to sporadic changes in a field of 
turbulence. It expresses the fact that turbulence does not fill the 
whole space in a turbulent flow. This is an important aspect of 
turbulent flows, which despite much work, is far from being completely 
understood (Schertzer and Lovejoy 1985). A measure of intermittency 
is the fraction of time in which an event occurs over a priod of 
distance (Tennekes and Lumley 1974). For extreme events, we expect 
this measure of intermittency to increase as turbulence sets in 
through flow instability, reaches some peak value and then decreases 
as the energy of the turbulent flow is cascaded to smaller scales 
through dissipative losses. 
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In a rough sense, we can consider the rain fields as fields of 
turbulence. precipitation can be considered an "extreme" event, an 
index of moist instability. The fraction of time/space that this 
event occurs is a measure of intermittency. 

An important parameter in the estimation of total rainfall from a 
GATE scene is the fractional rain area (Chiu, et al., 1986). Figure 1 
shows scatter diagrams of the average rainfall rate for a GATE scan 
and the fractional rain area with a rainfall rate of 1 m/hr and above 
on logarithm scales. The correlations between the two variables are 
extremely high for both phases of GATE. It is interesting to note 
that this correlation of 0.99 is higher than the correlation of 0.87 
between rainrate and Arkin's cloud index. Since the rainfall total 
(R) for a GATE scene is the product of the fractional area (p) 
multiplied by the average rainrate for the rainy pixels ( a ) ,  or R = 
pa, can take the logarithm of both sides and compute the variance 
of log R as a sum of the variance of log p and log a. The 
contributions from the various terms are given below for GATE 1 and 2. 

var(1og R) = var(1og p) + var(1og a )  + 2 cov(1og p log a) 

we 

(100%) (77% 1 ( 3 % )  (20% 1 GATE1 
(100%) (77% 1 ( 3 % )  (20% 1 GATE2 

We pointed out that this index of fractional rain area is 
equivalent to the so called "Area Time Integral (ATI)" used in radar 
meteorology to estimate rain volume. The AT1 is the time integral of 
the area of radar echoes. It is shown that the total rain volume of a 
system can be obtained by multiplying the AT1 by some climatological 
mean rainfall rate (Doneaud, et al. 1981). Jackson (1986) examined 
the contribution of the number of rain days in a month and the average 
intensity of rainfall during raindays in tropical stations to the 
monthly rainfall. It is found that the number of raindays is the 
dominant factor in determining the monthly total. These are consistent with our results on the analysis of GATE data and the 
logistic model. 

Because of the phenomena of intermittency in rain fields, it is 
difficult to define the usual characteristic functions of a turbulent 
field such as correlation or autocorrelation functions. For example, 
the autocorrelation functions will have a long tail at long 
separations due to the abundance of no rain observations. 

We have examined the structure of the rain field in terms of 
conditional probabilities. 

Figure 2 shows the probability of observing a rainrate of 1 mm/hr 
at a fixed location ( 4  km by 4 km pixel) in GATE at different time 
lags conditloa on observing such an event at time zero. It can be 
seen that the conditional probability drops off rather rapidly but 
reaches another secondary maximum in about 10-12 hours. The condition 
for independence is derived in the appendix and is plotted on the same 
graph. 

a .  

This assumed no sampling error or persistence in the data. 
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A similar calculation is performed on the conditional probability 
on space. Figure 3 shows lines of constant probability as a function 
of distance conditional on the event of having 1 mm/hr at a 4 km by 4 
km pixel for GATE 1 and 2 .  The anisotropy in space is clearly 
discernible for GATE 2. The more less east-west orientations of lines 
of constant probability is consistent with the meteorological 
conditions in GATE of the passage of elongated rain bands oriented in 
the east-west direction. 

In the retrieval of rainfall rate from microwave temperature 
measurements, a number of parameters enters into the retrieval. Since 
these parameters are quite variable, errors are introduced into the 
estimation scheme if some constant value is used. An important 
parameter is the height of the rain column. The bias due to the rain 
cloud height can be estimated as follows. The attenuation of microwave radiation (or change in the optical thickness z )  in the 
presence of rain can be written as 

where a and b are functions of frequency, drop size distribution and 
temperature of the drops. Olsen, et al. (1978), have examined the 
dependence of a and b over a broad range of frequencies and for 
different drop size distribution at various temperatures. At a 
frequency of about 20 GHz and 0 degrees Celsius, 

.OS < a < 0.09 

and 

with R the rainrate, in mm/hr, h, the effective height of the rain 
column, in km. Oftentimes h is defined in terms of the attenuation as 

At/aRb 

We would like to get some idea of the distribution of the height of 
rain columns and an estimate can then be made of the bias in using a 
climatological height in the estimation from microwave sensors. 

From equation (1) above (for simplicity, assume b = l), an 
estimate of the rainrate using a climatological cloud height, <h>, 
where < > denote ensemble averaged quantities, is 

R(<h>) E (At/a)l/<h> 

The bias in percent can now be written as 

B = (<R> - R(th>) = <R>/R(<h>) - 1 
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where 

<R> = At/a l/h p(h)dh I 
the factor At/a cancels out, and 

<R>/R(<h>) = <h> <l/h> 

TO calculate these quantities, the distribution of h P(h) is 
needed. The data we used to calculate P(h) are the so called "CAPPI" 
(constant Altitude Plane Position Indicator) data of GATE (pytlowany, 
et al., 1978). Figure 4 shows the histrograms of height obtained form 
3 days of data in each phase of GATE. We have taken individual pixels 
in calculating the statistics as opposed to earlier works which counts 
a rain cloud as an entity (e.g., Houze and Cheng, 1979). Our emphasis 
here is the estimation and correction of the bias associated with 
satellite retrieval. Because of the noise in the radar reflectivity, 
we have set a low threshold of 24 dbz corresponding to a rainrate of 1 
mm/hr . The histograms show bimodal distributions in GATE 2 and 3, 
with peaks at 5 and 8 kms respectively whereas this feature is absent 
in GATE 1. The double peaks are also present if the statistics is 
calculated over cloud clusters (Houze and cheng 1979). 

We noted that the bias is extremely sensitive to the population 
at the low cloud heights. If the threshold value is changed to the 
lowest detectable level, the whole historgram rises over all ranges in 
height. The increase in population at the low height will increase 
the bias substantially (from about 25 to 50 percent). 

Another point is that R and h are related: one expects a higher 
rainrate associated with higher cloud top. Adler and Mack (1984) have 
examined the usefulness. of this relation and other environmental 
information to estimate rainfall. Figure 5 shows a two dimensional 
distribution of distribution of h and radar reflectivity for the same 
GATE CAPPI data. The shape of the loci of the maxima of the 
distributions agree well with the rainrate--cloud height relation 
observed in tropical storms (Adler and Mack 1984, their Figure 1). 

5. Bain Field M o m  

5.1 Simulation Model 

To extend the data base beyond the scope of GATE for the purposes 
of sampling studies and the calibration of the logistic model, a 
simulation model of rain field is developed which preserves the 
characteristics of GATE rainfall: namely, fractional rain area and 
lognormality A description of 
the model is given in attachment C. This model is capable of 
producing realistic rain fields. 

of the rainy part of the distribution. 

Laughlin (1982) examined the errors associated with satellite 
sampling and computed the temporal autocorrelation function for 
different area averages for GATE. From the autocorrelation 
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functions, sampling requirements for different area averages are 
calculated. The temporal autocorrelation function for different areal 
averages in our model is also calculated. Our results are similar to 
those computed by Laughlin (1982)(See attachment C.). 

5.2 Stochastic Rearwsion & Q  

A regression model of replacement and immigration is also 
developed (Kedem and Chiu 1986)(attachment D). In this model, the 
number of raindrops within a rain volume is considered a random 
variable which can be changed by replacement and/or immigration. 
The model takes the form 

where 
by 
rain volume. It can be shown that if 

Xn is the number of drops at the nth step which can be replaced 
y fresh drops, and I denotes the number of immigrants entering the 

E(Yn,i) is small but greater than zero; and 

E(1n) is close to but less than unity 

then Xn follows a lognormal distribution. This provides a 
justification for the use of the lognormal distribution in fitting 
rainfall data. It also bypasses the use of the law of proportionate 
effect often quoted to achieve lognormality. When the model 
parameters are estimated from the GATE data, it was found that these 
conditions are satisfied for large area averages. Since the sampling 
frequency is 15 minutes during GATE, this result suggests that there 
is a spatial and temporal range in which the lognormal distribution 
can provide a good description of the rainfall rates. The range over 
which the lognormal distribution provides a good fit to the data is 
investigated in the following section. 

6 .  -ce Of m e l d  P w e t e m  

The three parameters of a mixed lognormal distribution that 
describe a rainfall distribution are dependent on the scale of 
averaging. The threshold that define extreme events is (in this case 
precipitation), therefore, also dependent on the averaging time/area. 
An obvious question then is over what range in time and space does 
lognormality provide a good description of rainrate distributions. 
As a practical concern, it is of interest to examine the dependence of 
the intermittency factor on the pixel size which is determined by the 
resolution of satellite sensors and the altitude of the orbits. 
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We have examined the GATE data for different area averages. The 
three parameters, p, a,  p2 in the mixed distribution model of the GATE 
rain field have been computed for different averaging areas in the 
range from 4 kms to about 350 kms (whole of GATE B-scale area) on the 
side. Figure 6 shows the results on a log-log scale. The linear 
relation between the log of the parameters and the square root of the 
averaging area is clearly discernible at least over the range from 
areas of 4 kms to 80 kms on the side. The linear dependence suggests 
a power law dependence of the parameters on the averaging area for 
sampling frequency of 15 minutes. 

Figure 7 shows the histograms of rainrates for square pixels of 
4 ,  40, 80, and about 350 kms on the side. The histograms are 
calculated on a logarithm scale. The logarithm scale is used because 
a lognormal distribution on a linear scale is a normal distribution on 
log scale. Another advantage of using the logarithm scale is that the 
no rain category appears at minus infinity. Hence a threshold for the 
occurence of events can be defined with no ambiguity. 

The general shift from the high values towards the low values are 
noted as the resolution decreases. the skewness in the curve is also 
increased accordingly. the spatial averaging process smoothes out the 
high rainrates and inflates the population at the low rainrate 
portion. These shifts occur when nonrainy pixels are averaged with 
rainy pixels. 

. . .  7 .  -te of Technical F e a s i w  

A logistic regression model has been developed to estimate the 
probability of rainfall given covariate observations such as 
radiometric measurements. The parameters of the model are estimated 
by maximizing a likelihood function. The significance of the 
estimators of the model can be readily tested by a ratio of the 
likelihoods. This method of testing allowed identification of 
important covariates as well as the way in which the covariates enter 
into the estimation. The logistic model has been tested on the 
rainfall data collected during phase 1 of GATE and successfully 
predict the observation for phase 2 of GATE. A major finding is the 
usefulness of the fractional rain area within a pixel. This parameter 
gives a better regression model than that which uses only the 
fractional area of heavy precipitation. The index of heavy 
precipitation area is interpreted as the cloud index of Arkin in 
estimating rainfall through the use of infrared measurements. 

To investigate further this relation, a correlation analysis was 
performed on the logarithm of GATE rainfall data and the logarithm of 
the fractional rain area. Correlation coefficients of 0.99 are 
obtained for both phases of GATE. These coefficients are larger than 
the value of 0.87 between the cloud index proposed by Arkin and the 
total rain volume. 

To estimate the mean and variance of areal average rainfall, a 
mixed distribution model was proposed and was found to model the 
distribution of rainfall data in GATE quite well. The parameters of 
the mixed distribution model consists of two parts: a discrete 
probability of no rain and a continuous distribuiton which describes 
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the rainy part of the mixed distribution. It was found that the rainy 
part of the distribution is fairly well described by a lognormal 
distribution. The discrete part of the mixed distribution is 
interpreted as a measure of intermittency which found familiarity in 
the study of turbulent flows. 

Because of the nature of intermittency, we propose the use of the 
conditional probability in describing the rain field. The probability 
of rain conditional on rain at a different time/space for the GATE 
period is computed. The anisotropy in space is clearly discernible 
for GATE 2. 

To broaden the data base for the testing of the logistic model, 
a data set of three dimensional rain cloud structure derived from 
radar echoes during GATE is used to compile a data set of cloud height 
and surface rainfall. The conditional probability distribution of 
cloud height and surface rainfall is calculated. The relationship 
between surface rainfall and cloud height is consistent with earlier 
results on tropical cloud systems. 

The simulation model preserves the lognormality and intermittency 
characteristics of GATE and the temporal autocorrelation function 
computed from rainfields generated by the model is very similar to 
that of Laughlin (1982) in estimating the sampling errors associated 
with satellite observations. 

A model is developed to simulate rain fields observed in GATE. 

A regression model of replacement and immigration is also 
developed which is capable of producing a lognormal distribution in 
some asymptotic limits. These asymptotic conditions are observed in 
GATE for large area averages ( 4 0  kms on the side) but not for small 
area averages ( 4  kms on the side). 

Since the GATE data is taken every 15 minutes, this suggest that 
the lognormal distirubiton is a valid approximation within some range 
of averaging in time and space. This range of validity is 
investigated by computing the parameters of the mixed lognormal 
distribution model for different area averages in GATE. It was found 
that these parameters varies as a power of the averaging area at least 
over the range from areas of 4 to 80 kms on the side. 

We have demonstrated the feasibility of using the logistic 
regression in identifying important covariates in the estimation of 
rainfall. A logical next step is to refine the logistic technique by 
the method of partial likelihood (Cox 1975). This method allows the 
disposition of the assumption of independence of the estimators. To 
examine the contribution of the radiometric data from the different 
atmospheric channels, we need to put together a data of concurrent 
visible, infrare and microwave data. Model generated rain fields are 
also needed to calibrate the logistic technique. Rainfall statistics 
derived from analyses of the rainfall data sets will proved to be 
useful in providing the required constraints for these simulation 
models. 
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APPENDIX: Criterion for Independence 
of Conditional Probabilities 

We want to compute the lag time between observations such that 
the observed events becomes statistically independent. Assuming 
stationarity, the condition for statistical independence can be 
obtained as follows. Let A(B) be the event that the rainrate (R) at 
time t(t - t) in a fixed location be greater than some prescribed 
value, say Ro, i.e., 

A: R(t) > Ro 

The probability of A conditional on B can be written as 

P(AJB) = P ( A  n B)/P(B) 
if A and B becomes statistically independent, then 

P(A n B) = P(A) P(B) 

so the condition for statistical independence is 

P ( A ~ B )  = P(A) 

where P(A) is the probability of rainrate greater than Ro. 



27 

REFERENCES 

Adler, R., and Mack, R., "Thunderstorm Cloud Height-Rainfall Rate 
Relations for Use with Satellite Rainfall Estimation Techniques," 
SL. C l i m e  Meteor-, Z U ,  280-296, 1984. 

Arkell, R., and Hudlow, M., "GATE International Meteorological Radar 
Atlas," U.S. Dept. of Commerce, NOAA, U.S. Government Printing 
Office, Washington, DC, 1977. 

Arkin, P.A., "The Relationship Between Fractional Coverage of High 
Cloud and Rainfall Accumulation During GATE over the B-Scale," 

W k l .  &ye,  LQ2., 1382-1387, 1979. 

Atlas, D., and Thiele, O., "Precipitation Measurements from Space," 
Workshop Report, NASA/Goddard Space Flight Center, Greenbelt, MD 
20771, 1981. 

Austin, P. M., and Geotis, S., BFr nteractm , eds. F. Dobson, L. 
Hesse, and R. Davis, "Precipitation Measurements over the 
Oceans,Q1 Plenum Pub. Corp., 227 west 17th st., New York, NY 
10011, 1980. 

Barrett, E. C., and Martin, D. M., "The Use of Satellite Data in 
Rainfall Monitoring," Academic Press, New York, NY, 340, 1981. 

Chiu, L. S., and Kedem, B., gmSatellite Rainfall Retrieval by Logistic 
Regression," 2nd Conf. Satellite Meteorology, 224-227, mer. 
Meteoro. SOC., Boston, MA, 1986. 

Cox, D. R., "Partial Likelihood," U o m e t r w  , 62, 269-276, 1975. 

Cox, D. R., and Oakes, D., chapman and Hall, "Analysis of Survival 
Data," New York, NY 10017, 201, 1984. 

Cox, D. R., Methsen, "The Analysis of Binary Data," London, 1970. 

Doneaud, A. A . ,  Smith, L., Dennis, A. S., and Sengupta, S . ,  "A Simple 
Method for Estimating Convective Rain Volume over an Area," yater 
& S O U .  m., JJ, 1676-1682, 1981. 

Gill, A. E., llAtmosphere-Ocean Dynamics," Academic Press, NY, 662, 
1982. 

Horel, J. D., and Wallace, J. M., "Planetary-Scale Atmospheric 
Phenomena Associated with the Southern Oscillation," m. Neath. 
BeJL., m, 813-829, 1981. 

Hudlow, V. L., M. D., Pytlowany, P. J., Richards, F. P., and Hoff, J. 
D., "GATE Radar Rainfall Processing System," NOAA Technical 
Memorandum, EDIS 26, NOAA, Washington, DC, 1979. 

A 



28 

Jackson, I. J., "Relationship Between Raindays, Mean Daily Intensity, 
and Monthly Rainfall in the Tropics," J. Climatoloav , 4, 117-134, 
1986. 

Laevastu, T., Clarke, L., and Wolff, P. M., "Oceanic Part of the 
Hydrological Cycle," &MQ BeDorts M Proiects I u, WMO, 
Geneva, Switzerland, 1969. 

Lovejoy, S., and Austin, G. L., "The Delineation of Rain Areas from 
Visible and IR Satellite Data for GATE and Mid-Latitudes,Ii 

here - Ocean, 17[1!, 77-92, 1979. 
Miller, D. H., "Water at the Surface of the Earth," Academic Press, 

New York, NY 10003, 1977. 

Olsen, R. L., Rogers, D. V., and Hodge, D. B., "The aR Relation in 
Calculation of Rain Attenuation," IEEE Trans. a. m., 

- ( 2 \ ,  318-329, 1978. 

Pytlowany, P. J., Richards, R. P., and Hudlow, M. D., "GATE Radar 
CAPPI Derivation for Three-Dimensional Reflectivity Analyses," 
NOAA Tech. Memorandum, EDIS 27, NOAA, Washington, DC, 1979. 

"Radar Characteristics of Tropical Convection Observed During GATE: 
Mean Properties and Trends over the Summer Season," m. yeath. 
m., m, 964-980, 1977. 

Schertzer, De, and Lovejoy, S . ,  "The Dimension of Intermittency of 
Atmospheric Dynamics, Turbuled &ear Flows, 4, 7-33, 
Springer-Verlag, Berlin, Heidelberg, 1985. 

Theon, J., North, G., Wilheit, T., and Thiele, O., "Tropical Rainfall 
Measuring Mission, '' Workshop Report, Nov. 1985, NASA/Goddard 
Space Flight Center, Greenbelt, MD (to be published), 1986. 

Wilheit, T. T., Chang, A. T. C., Rao, M. S. V., Rodgers, E. B., and 
Theon, J. S., "A Satellite Technique for Quantitatively Mapping 
Rainfall over the Oceans," J. m. Meteor., Ld, 551-560, 1977. 

Wu, R., and Weinman, J. A., "Microwave Radiance from Precipitating 
Clouds Containing Aspherical Ice Combined Phase, and Liquid 
Hydrometeors," J. -. m., U(D52, 7170-7178, 1984. 



ATTACHMENT A 

Rrprinced from Pmprint VoIuw. S a n d  Confr- on 
Satellite Metwrdory /Remote srndng and Applications. 
Yay 13-16, 1016. Wllli.maburg. Va. Published by the 
American Metwrologicd Sodrcy, Borton, Maar. 

SATELLITE RAINFALL RETRIEVAL BY LOGISTIC REGRESSION 

LO-g S. Chiu 
Applied Research Corporation 

8201 Corporate Drive, Suite 920 
Landover, Maryland 20785 

and 

Ben jamin Kedem 
Department of Mathematics 
University of Maryland 

College Park, Maryland 20742 

1. 1YTF.ODUCTION 

me retrieval of meteorological quanti- 
ties from satellite observations is bafied on 
covariate information such as radiometric 
measurements or physical quantities derived from 
them. The covariate information is influenced 
by factors other than the desired meteorological 
variable. The situation is further complicated 
by the different resolutions of the different 
sensors. It is useful to identify important 
covariates for the prioritization of tranemis- 
sior! of data and to ascertain the possibility 
of on board processing. 

fall is crucial for the advancement of our 
understanding of the large-scale dynamics of the 
oceanfatmosphere system. An account of rain- 
fall monitorinR techniques from satellites is 
given by Barrett and Martin (1981). A satellite 
mission for the monitoring of tropical rainfall 
has been proposed to NASA (Theon et a1 1986). 
Three instruments are proposed f o r t E  mission: 
a radar, an Advanced Very High Resolution 
Radiometer (AVHRR) and a microwave instrument, 
possibly an Electrically Scanning Microwave 
Radiometer (ESMR). The expected outcome from 
this mission is at least three years of rainfall 
data derived from concommitant covariate obser- 
vations. 

can effectively accommodate covariate information. 
but which has not been used in the context of 
rainfall estimation, is described. A major 
difference between linear regression and logistic 
regression is that the former technique maxi- 
mizes the variance explained while in logistic 
regression a likelihood function, or probability 
of an event, is maximized. The output from such 
a model is the distribution of rainrate cate- 
gories from which standard errors can be esti- 
mated. The significance of the covariates can 
be tested rather readily. An example of the 
logistic model is given for the scenario of the 
proposed tropical rainfall monitoring mission 
from which microwave observations and fractional 
rain area measurements may be available. 

Accurate measurement of tropical rain- 

In the following a logistic model that 

2. THE LOGISTIC MODEL 

The logistic model is useful in deter- 
mining the relationship between the distribution 

of a random variable and a set of covariates. 
It has been applied in various forms in reliabil- 
ity testing and the analysis of survival data 
(Cox and Oakes, 1984). A detailed treatment of 
the logistic model is given by Cox (1970). 
are interested in the relationship between rain- 
fall rate averaged over an area R and L, the 
vector of covariate variables related to R. 
For the event R L  Ro, the logistic model is given 

We 

by 
P ( e % )  = [1 + exp ( -b't -- )I- '  

where P(R>Q) is the probabiiity that the rain- 
fall rate-R exceeds % and 

- b ( bo, bl. b2s ..-, bk ) 

is a vector of constants. From n observations of 
R, the b's can be estimated by the method of 
maximum likelihood. Let R,J be fixed so that the 
a binary variable Y can be defined as 

1 RL Ro 
Y =  

0 otherwise 
The logistic model becomes 

P(Y = 1) = [ l  + exp(-(bo + bit! + ...+ bkt!,))J-i 

where the t's are covariate variables. We assume 
Y!, Y2. ..., Yn are conditionally independent 
given the covariate information. Then the 
likelihood function L(1) is given by 

n Yi 
L(a> = I'I [exp(~~'1))1 / [ 1 + exp(ti'b)l 

111 

and the asymptotic covariance matrix is given by 
(-E ( a 2 l o g  L@)/ abi abj ) )-' 

where E is the expected value. To test the sig- 
nificance of the regression coefficients, we use 
the likelihood ratio test 

= -2 log LO/L1 
where L is the maximized likelihood under the 
full moael and Lo is the maximized likelihood 
under the hypothesis that the some of the 
regression coefficients are zero. 
are assumed to vanish, then X follows asymptotic- 
ally a chi-square distribution with q degrees of 
freedom.. 

If q of the b's 
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3 .  A SCENARIO 

We consider the scenario when concommi- 
tant observations of microwave temperature and 
fractional rain area are available. The rainfall 
data collected during the phase I of GATE are 
used. The basic d ta are radar-estimated rain- 
rates on 4 by 4 km pixels and measurements are 
made at 15 minute intervals. From the basic 
data, temperature and fractional rain area data 
for the scenario are generated as follows. 

1 

We assume that the microwave instrument 
measu es the temperature over an area of 32 by 
32 km (i.e. 8 by 8 pixels) which is the unit 
area for our scenario. To calcu ate a mean 
temperature over the 32 by 32 km box, a simple 
relation between the rainrate (r) and tempera- 
ture (TR) 
TR(r) = Tav(l-x) + Ts E x + (1- E )Tav(l-x)x 
where Tav is the average temperature of the 
atmospheric column (=270K), T is the surface 
temperature (=290K), E is surface emissivity 
(=0.5). x=exp(- T ) i s  optical thickness, is used. 
T is approximated as T = 0.2r, with r in mm/hr. 
The dependence of i o n  the height of the rain 
column is ignored in this case. A functional 
relation between R and T is shown in fig. 1. 
From the rainrate at eacf pixel, a microwave 
temperature is computed. The microwave tem era- 
tures are then averaged over the 32 by 32 km box 
to yield the average temperature (T). The 
fractional rain area (F) is obtained by dividing 
the number of pixels with rainrate in excess of 
1 mm/hr by 6 4 .  The box averaged rainrate (R) is 
obtained by averaging the rainrates over the 
6 4  pixels. Fig. 1 shows the scattered diagrams 
of R versus T. The fact that T (R) is greater 
than T follows from Jenssen's Inequality 
(Feller, 1966). Fig. 2 shows the relationship 
between F and R. The strong correlation 
between R and F is also noted by Lovejoy (1980) 
for the phase 111 of GATE for the whole GATE 
area. Also included in our analysis are 
fractional rain area with rainrates in excess of 
20 mm/hr (F,). 
from a 32 by 32 km grid box in the center of 
the GATE area. Characteristics of the time 
series are summarized in table 1. Data from 
another box located approximately 100 km to the 
south of the first is used for validation. 

E 
3 

(1) 

s 

R 

Thej data have been extracted 

T a b l e  1. C h a r a c t e r i s t i c s  o f  t h e  t i m e  s e r i e s  

V a r i a b l e  mean s.d. minimum maximun 

R (mn/hr) .44 1.48 0.0 17.5 

T ( K )  151.5 16.67 145.0 263.1 

F .072 .17 0.0 1 .o 

F 1  .006 .03 0.0 -47 
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Fig. 1. Scatter diagram 01 rainfall rate over 
the box (R) and microwave temperature (T). The 
dashed curve shows that functional relationship 
between TR and R. 

+ + I  k 4 

+ 
+ I  

+ '  + 

Rainf a1 1 rat e (mm/hr ) 

Fig. 2 .  Scatter didgram of rainfall rate (R) 
and fractional rain area with rainrates in excess 
of 1 mm/hr (F). 

4 .  RESULTS 

The full logistic model is of the form 
P (R> 1 )=I  l+exp- (b,+blF+b2Fl+b3T+b4TZ 1 -1 

and the temperature over the 32 by 32 km 4 1  box. 

where R. F, F1 and T are rainrate, fractional 
area with rainrate in excess of 1 mm/hr. frac- 
tional area with rainrate in excess of 2 mm hr 

T,, is T lagged at 1 time unit (i.e. 15 minutes). 
A total of 10 different models have been run and 
the regression coefficients are presented in 
table 2 .  The maximum log likelihood ranges from 
-309.6 for a model with F as the only regressor 
(model 10) to -28.6 for tfie full model (model 1). 
From the table, important covariates can be 
identified. For illustration purposes, we 
consider models 1 and 8. The hypothesis we want 
to test is 

Ho: b2 b3 bq = 0 
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The likelihood ratio test yields--- 

and the 5% significance level of xt3) is 7.81. 
Hence Ho is rejected. To see if covariate TL 
contributes to the estimation, the hypothesis 
H1: bq = 0 is tested. To do this, we compare 
model 1 and 2 and obtain the h value of 
-21-30.1+28.6] = 3. The 5% level for ~ $ 1 )  is 
3 . 8  and H1 has to be accepted. 
is readily seen that bl, b2. b3 are highly 
significant . 

h = -2 [-159.1+28.6] = 260 

In this way, it 

The goodness of the model is tested by 
applying it to the validation time series which 
is taken from an area to the south of the center 
of GATE (see section 3). Model 2 is adopted for 
validation, i.e. we use 
P(R>lmm/hr)=[ l+exp -(-207.8-61. 7F1307Fl+l .34T) I-' 
The values of F, F1 and T taken from the location 
designated for validation are substituted in ( 2 )  
and the probability calculated. We defined as a 
goodness of fit criterion the mean square error 

This is 0.005 for the prediction using model 2. 
It can be seen from fig. 3 that the prediction 
matches the ohservations very well. 

Logistic Models 
Table 2 .  Regression Coefficients for Different 

parameter F F1 T TL 

regression maximized 
coef f .  bo b l  b2 b3 b4 l o g  

l i k e l i h o o d  
model 

1 -217.7 -66.8 309.8 1.33 0.077 -28.6 
(46.9)  (16.7)  (61.0) ( .30)  (.046) 

(44.8)  (16.0) (59.4) ( .29)  
2 -207.8 -61.7 307.0 1.34 --- -30.1 

3 -17.7 
(4.34) 

4 -7.27 
( .68 

5 -166.2 
(18.5 

16.6 249.7 --- 0.071 -62.8 
(3 .2 )  (31.4)  (.028) 

(2 .4)  (29.3)  
22.5 240.5 --- --- -65.9 

-62.8 --- 1.10 --- -76.2 
(8 .6)  ( . I21 

6 -48.1 -33 -.035 -115.0 --- --- 
(3.46) (.027) 

7 -47.9 --- --- .29 --- -116.1 
(3.4)  (.02) 

8 -4.9 21.0 --- --- --- -159.1 
( .27) (1.4) 

9 -34.9 --- --- --- .21 -188.1 
(2.1)  ( .01) 

10 -3.1 --- 249.3 --- --- -309.6 
( .12)  (19.5) 

The s.d.s o f  the  c o e f f i c i e n t s  appear i n  parentheses 

~ 

100 200 300 400 500 time 0 

Fig. 3 .  Time series of predicted probability of 
exceeding 1 m/hr and observed rainrate in 
another location. 

5. DISCUSSION 

In our example, the microwave temperature 
data, which integrates the effect of partially 
filled non-uniform field of view of the micro- 
wave sensor, are not independent since they are 
derived from a rainrate-temperature relationship 
but in the presence of T. the addition of T, as 
a regressor does not improve :he model signtfi- 
cantly. This can be seen by comparing the 
maximized likelihood in models 1 and 2 and 
models 6 and 7.  The interpretation is that most 
of the information is contained in T and the 
addition of T adds redundant information. In 
the absence o$ T, the inclusion of T improves 
the model as the maximized l o g  likelhood is 
increased from -65.9 (model 4 )  to -62.8 (model 
3 ) .  This increase is significant by the log 
likelihood ratio test. 

The relationship between average rainrate 
and fractional rain area has strong implications 
for rainfall estimation. From infrared imagery, 
Arkin (1979)  accounted for a large fraction of 
the rainfall variance by considering the number 
of pixels below a threshold temperature. 
Implict is the assumption that convective rain- 
fall, which is in the heavy rainrate portion of 
the rain spectrum. is produced in deep cumulus 
clouds. EOW important the heavy rainrates are In 
determining the total rainfall can be examined 
by considering F1. 
log likelihood in model 8 and 10, we see that 
model 8, with fractional low rainrates 
(>1 mm/hr) area as the only regressor is better 
than model 10 which uses only F1 in the maximum 
log likelihood sense. If both are used, a 
significantly better model is obtained (model 4 ) .  

If we compare the maximized 

In this report, the potential of logistic 
models in rainfall estimation is demonstrated. 
We plan to extend our analysis using actual 
satellite observations such as the ESMR 
measurements taken on board the NIMBUS V 
satellite. 
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A b s t r a c t  

A t echn ique  t o  determine t h e  t i m e  mean a r e a l  averaged r a i n f a l l  

i s  developed. 

r a i n r a t e  by a mixed d i s t r i b u t i o n .  The model i s  t e s t e d  on r a i n f a l l  d a t a  

c o l l e c t e d  d u r i n g  GATE ( GARP -Global Atmospheric Research Program- A t l a n t i c  

T r o p i c a l  Exper iment) .  Sampling designs which s e l e c t  o n l y  a p o r t i o n  

of t h e  r a i n  da ta  a r e  used. It was found t h a t  a lognormal d i s t r i b u t i o n  

p rov ides  an e x c e l l e n t  f i t  t o  t h e  r a i n y  p o r t i o n  o f  t h e  d i s t r i b u t i o n .  

The r e s u l t s  a r e  i n s e n s i t i v e  f o r  sampling f requencies i n  t h e  range 

o f  h a l f  t o  a few hours i n  t i m e  and 16 t o  40 kms i n  space. Sampling 

e r r o r s  a r e  about 10% o f  t h e  mean or l e s s  f o r  sampl ing des igns which 

mimic obse rva t i ons  by s a t e l l i t e s  tha t  a re  p o l a r  o r b i t i n g  o r  have a 

low i n c l i n a t i o n .  

o f  r a i n  which c o r r e l a t e s  s i  gn i  f i c a n t i y  w i t h  t h e  average r a i  n f a l 1 .  

Th is  i s  c o n s i s t e n t  w i t h  e a r l i e r  r e s u l t s  such as those  which r e l a t e  

t h e  number o f  r a i n  days and r a i n  i n t e n s i t y  t o  monthly r a i n f a l l  and t h e  

use o f  t h e  Area Time I n t e g r a l  (ATI)  i n  e s t i m a t i n g  r a i n  volume. 

The need f o r  microwave sensors i n  s a t e l l i t e  r a i n f a l l  m o n i t o r i n g  systems 

The approach t a k e n  i s  t o  model t h e  d i s t r i b u t i o n  o f  

An i m p o r t a n t  parameter i n  t h e  model i s  t h e  p r o b a b i l i t y  

i s  s t r e s s e d  and an a l g o r i t h m  f o r  e s t i m a t i n g  monthly mean r a i n f a l l  f r om 

microwave sensor measurements such as t h e  E l e c t r i c a l  l y  Scanning Microwave 

Radiometer (ESMR) o r  a r a d a r  i s  proposed. 
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1. I n t r o d u c t i o n  

The l a t e n t  heat  re leased  d u r i n g  t h e  process o f  p r e c i p i t a t i o n  c o n s i t i t u e s  

a major  component i n  t h e  f o r c i n g  o f  atmospher ic c i r c u l a t i o n s  (Lorenz 

1967). T h e o r e t i c a l  as w e l l  as e m p i r i c a l  s t u d i e s  have shown t h a t  v a r i a t i o n s  

i n  t r o p i c a l  f o r c i n g  a r e  i ns t rumen ta l  t o  anomalous weather p a t t e r n s  w o r l d  

wide ( H o r e l  and Wal lace 1981, G i l l  1982). Accu ra te  measurements o f  

p r e c i p i t a t i o n  as an i n d e x  o f  atmospheric v a r i a b i l i t y  a r e  t h e r e f o r e  u s e f u l  

bo th  as a t o o l  i n  d i a g n o s t i c  as w e l l  as p r o g n o s t i c  s t u d i e s  o f  atmospher ic 

c i  r c u  1 a t i  ons. 

Over l a n d  t h e  problem of e s t i m a t i n g  t i m e  mean a r e a l  average r a i n f a l l  

has occupied h y d r o l o g i s t s  f o r  a long t i m e  (Eagleson 1967, Rodriguez 

-1 tu rbe  & M e j i a  1974, Bras & Rodr iguez - I tu rbe  1976, Bras & Colon 1978). 

The i n t e r e s t  i s  i n  r i v e r / g r o u n d  water f l ow ,  f l o o d  f o r e c a s t i n g  and catchment 

hydro logy.  A major  emphasis i s  the model ing o f  t h e  r a i n  f i e l d  as a two 

d imensional  random f i e l d .  Once the  parameters of t h e  random f i e l d  a r e  

est imated,  t h e  mean and va r iance  o f  r a i n f a l l  t o t a l  can be c a l c u l a t e d .  

The a p p l i c a b i l i t y  o f  va r ious  mapping techn iques  t o  fill i n  m i s s i n g  d a t a  

has been assessed by C r e u t i n  and Obled (1982) and approaches t o  network 

des igns have been summarized by Moses (1982). 

-- 

Because o f  t h e  huge e x t e n t  o f  t h e  t r o p i c a l  oceans and t h e  e r r o r s  

a s s o c i a t e d  w i t h  i n  s i t u  measurements on board sh ips ,  s a t e l l i t e  o b s e r v a t i o n  

i s  p r o b a b l y  t h e  u l t i m a t e  mode by which p r e c i p i t a t i o n  measurements can be 

made o v e r  t h e  vast  oceans ( A u s t i n  and G e o t i s  1982; A t l a s  and T h i e l e  

1981). A rev iew o f  v a r i o u s  s a t e l l i t e  r a i n f a l l  e s t i m a t i o n  techniques i s  

g i ven  by B a r r e t t  and M a r t i n  (1981). 
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The method o f  sampl ing by s a t e l l i t e s  d i f f e r s  f rom t h a t  by networks 

o f  l a n d  based r a i n  guages. The former p rov ides  snap sho ts  of  p r e c i p i t a t i o n  

i n f o r m a t i o n ,  i n  terms of rad iances f rom d i f f e r e n t  sensors, w h i l e  t h e  l a t t e r  

g i v e s  cont inuous r a i n  gauge measurements a t  i s o l a t e d  s t a t i o n s .  

An a l t e r n a t i v e  approach t o  modeling t h e  temporal  and s p a t i a l  s t r u c t u r e  

o f  t h e  r a i n  f i e l d  i s  t o  c o n s i d e r  the d i s t r i b u t i o n  of r a i n f a l l  c a t e g o r i e s  

i n  t h e  e s t i m a t i o n  o f  t i m e  a r e a l  mean r a i n f a l l .  I f  one cons ide rs  cont inuous 

sampl ing a t  a f i x e d  l o c a t i o n ,  i t  i s  obv ious t h a t  t h e  r a i n  volume can be 

es t ima ted  e i t h e r  th rough  i n t e g r a t i n g  t h e  t i m e  s e r i e s  o f  r a i n f a l l  r a t e  or 

v i a  comput ing t h e  mean o f  t h e  r a i n r a t e  d i s t r i b u t i o n .  

o f  r a i n f a l l  r a t e s  i s  obta ined,  t h e  mean and va r iance  o f  t h e  t o t a l  r a i n f a l l  

can be est imated. 

Once t h e  d i s t r i b u t i o n  

The c l i m a t o l o g y  o f  heavy r a i n f a l l  s t a t i s t i c s  a t  p o i n t s  or r a i n f a l l  

s t a t  i s t i  cs a1 ong I S nes has been s tuc i i  ea because o f  the-; r i iiiportaiice i n 

microwave communication (Rogers 1976, Drufuca & Rogers 1978, L i n  1976, 

Freeny & Gabbe 1969). The c l i m a t o l o g y  o f  r a i n f a l l  s t a t i s t i c s  f o r  t h e  whole 

r a i n  spectrum has a l s o  been compiled f o r  c l i m a t i c  s tud ies .  A common 

f e a t u r e  o f  t hese  cummulative d i s t r i b u t i o n s  o f  r a i n f a l l  i s  t h a t  t h e i r  

f u n c t i o n a l  forms a r e  q u i t e  s i m i l a r  f o r  a d i v e r s i t y  of  geographic regimes 

(Jones and Sims 1978). Oftent imes, a lognormal d i s t r i b u t i o n  i s  quoted. 

The e s t i m a t i o n  o f  t i m e  mean a r e a l  average r a i n f a l l  i s  determined 

by two f a c t o r s :  how o f t e n  does i t  r a i n  and how h a r d  does i t  r a i n  when i t  

r a i n s ?  An approach t h a t  address the f i r s t  q u e s t i o n  i s  t h e  use o f  t h e  so 

c a l l e d  "Area Time I n t e g r a l "  (AT I )  i n  e s t i m a t i n g  r a i n  volume (Lopez 1976, 

Donuead -- e t  a1 1982a). 

p r e c i p i t a t i o n  as seen by radar.  

The AT1 i s  t h e  i n t e g r a l  o v e r  t i m e  o f  t h e  area o f  

The use o f  a convec t i ve  i ndex  ( A r k i n  
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1979) and t h e  d e l i n e a t i o n  o f  r a i n  area f rom v i s i b l e  and i n f r a r e d  s a t e  

imager ies  (Lovejoy & A u s t i n  1982) seem t o  f a l l  i n t o  t h i s  category.  

Jackson (1986) examines t h e  two f a c t o r s  i n  t o t o  by s t u d y i n g  t h e  r e l a t  

I n  t h i s  r e p o r t ,  we propose a m 

e s t i m a t i o n  o f  t i m e  mean a r e a l  average 

so  t h a t  bo th  f a c t o r s  can be combined 

d i s t r i b u t i o n  i s  desc r ibed  ( s e c t i o n  2 )  

l i t e  

onshi  p 

between t h e  number o f  ra indays  i n  a month, t h e  average r a i n f a l l  i n t e n s i t y  

i n  ra indays  and t h e  monthly t o t a l  r a i n f a l l .  

xed d i s t r i b u t i o n  model f o r  t h e  

r a i n f a l l .  The model i s  s t r u c t u r e d  

n a s i n g l e  f o r m u l a t i o n .  

and a p p l i e d  t o  r a i n r a t e  d a t a  

A mixed 

c o l l e c t e d  d u r i n g  GATE. The GATE r a i n f a l l  da ta  and e s t i m a t i o n  procedures 

a r e  desc r ibed  i n  s e c t i o n s  3 and 4. 

f o r  d i f f e r e n t  sampl ing designs. 

Sec t i on  5 presents  o u r  r e s u l t s  

The r e l a t i v e  importance of t h e  d i f f e r e n t  

c o n t r i b u t i n g  f a c t o r s  i n  t h e  e s t i m a t i o n  scheme a re  examined i n  s e c t i o n  6. 

S e c t i o n  7 discusses and concludes ou r  f i n d i n g s .  

3 
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2, Mixed D i s t r i b u t i o n  

Most s t a t i s t i c a l  d i s t r i b u t i o n s  encountered i n  p r a c t i c e  a r e  

e i t h e r  d i s c r e t e  o r  cont inuous. I n  t h e  d i s c r e t e  case, t h e  random v a r i a b l e  

assumes a f i n i t e  ( o r  countable)  number o f  values w h i l e  i n  t h e  cont inuous 

case, t h e  v a r i a b l e s  assumes a l l  values i n  t h e  i n t e r v a l  which can be 

f i n i t e  o r  i n f i n i t e .  However, there  a r e  s i t u a t i o n s  when t h e  random 

v a r i  ab1 e assumes d i  s t i  n c t  values w i t h  p o s i  t i  ve probabi  1 i ty and o t h e r  

values i n  t h e  cont inuous i n t e r v a l .  Such a random v a r i a b l e  i s  s a i d  t o  

have a mixed d i s t r i b u t i o n .  

f rom t h e  r e l i a b i l i t y  and l i f e  t i m e  t e s t i n g  o f  l i g h t  bulbs. When a l i g h t  

b u l b  i s  t u r n e d  on a t  t i m e  zero, there  i s  a p o s i t i v e  p r o b a b i l i t y  t h a t  i t  

w i l l  be burn t  ou t  immediately.  I f  t h e  l i g h t  b u l b  i s  n o t  b u r n t  ou t  i t  

An example o f  a mixed d i s t r i b u t i o n  comes 

i s  l e f t  on f o r  an hour. The p r o b a b i l i t y  t h a t  t h e  l i g h t  b u l b  may be 

b u r n t  ou t  d u r i n g  t h e  hour  i s  pos i tcve .  

a jump a t  X=O w h i l e  i n  t h e  i n t e r v a l  (0,1], i t  i s  cont inuous ly  

d i f f e r e n t i a b l e  (see Hogg and Tanis, 1977). The mixed d i s t r i b u t i o n  can 

be considered a s p e c i a l  case o f  a m i x t u r e  d i s t r i b u t i o n ,  

Hence t h e  d i s t r i b u t i o n  o f  X has 

I n  t h e  case o f  r a i n f a l l  r a t e  sampling, t h e  p r o b a b i l i t y  o f  measuring 

no r a i n  a t  any i n s t a n c e  i s  large.  Many prev ious  s t u d i e s  have focused on 

t h e  e s t i m a t i o n  o f  t h e  r a i n i n g  p o r t i o n  o f  t h e  d i s t r i b u t i o n .  It t u r n s  out ,  

as we s h a l l  demonstrate i n  t h i s  paper, t h a t  t h e  no r a i n  p r o b a b i l i t y  i s  an 

i m p o r t a n t  parameter i n  t h e  est imat ion.  

The mixed d i s t r i b u t i o n  model o f  r a i n f a l l  r a t e s  can be descr ibed as  

f o l l o w s :  L e t  R be t h e  r a i n f a  1 r a t e  sampled i n  space and t ime. The 

c u m u l a t i v e  p r o b a b i l i t y  d i s t r  bu t ion  (CPD) can be w r i t t e n  as 

F R ) = P ( R < r )  

where P ( R < r ) i s  t h e  p r o b a b i l i t y  t h a t  t h e  r a i n f a l l  r a t e  R i s  l e s s  than 

c 
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some f i x e d  r. Let  P ( R = O )  = 1 - p. The cond i t i ona l  dens i ty  

of R given R > 0 i s  

f ( r = U p  aF/ a r 

It fo l lows t h a t  t h e  genera l ized densi ty  g ( r )  takes t h e  form 

0 r < O  

g ( r )  = 1 - p r = O  

p f(r) r > 0 

where f i s  the  dens i ty  of R cond i t iona l  on R>O. Thus t h e  CPF can be w r i t t e n  

as 
r 

0 
F ( r )  = ( 1 - p )  t p f ( x )  dx, r > 0 

The expected mean o f  R i s  

00 

E ( R )  = p 1 x f ( x )  dx 
0 

and t h e  var iance 

The above mixed d i s t r i b u t i o n  can be descr ibed by several  

parameters, p and - e , ( 2 ) = (  91, 02 ,...) such t h a t  

f(r) = f h P ,  2 1 
For a sample size o f  n which consis ts  o f  m r a i n i n g  measurements and 

n-m non-ra in ing measurements, the l i k e l i h o o d  func t i on  o f  p and - e i s  

g i  ven by 

n-m m 
L(P, 2 - = e )  = (1-p) P f ( r1 ,  s ) , * = - f ( r m ,  5 1 

The parameters can be est imated by var ious techniques such as the  method o f  

moments o r  maximum l i k e l i h o o d .  
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The maximum l i k e l i h o o d  e s t i m a t e  o f  p i s  

p = m/n 

which i s  independent o f  any d i s t r i b u t i o n  model ( i . e .  f ) .  

b 
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3. The da ta  and sampl ing des ign  

T h i s  techn ique  has been t e s t e d  by a p p l y i n g  i t  t o  r a i n f a l l  r a t e  da ta  

c o l l e c t e d  d u r i n g  t h e  GATE (GARP -Global Atmospheric Research Program- 

A t l a n t i c  T r o p i c a l  Exper iment) .  The GATE i s  an o b s e r v a t i o n a l  program 

conducted i n  t h e  summer o f  1974. 

each termed a phase, d e t a i l e d  r a i n f a l l  measurements f r o m  r a i n  gauges and 

r a d a r s  on an a r r a y  o f  research vessels were made o v e r  an area c a l l e d  t h e  

B-scale.  The c e n t e r  o f  t h e  B-scale area i s  l o c a t e d  a t  8.5N , 23.5E and 

encompasses an area o f  about 200 km i n  diameter.  A r k e l l  and Hudlow 

( 1 9 7 7 )  composited t h e  r a d a r  measurements f rom sh ips  and presented an a t l a s  o f  

t h e  r a d a r  echoes a t  1 5  minute i n t e r v a l s .  

conve r ted  t h e  r a d a r  measurements t o  r a i  n r a t e s  and presented r a i  n r a t e  

Dur ing t h r e e  r o u g h l y  t r i - w e e k l y  p e r i o d s ,  

P a t t e r s o n  -- e t  a l .  (1979) 

da ta  i n  4 by 4 km2 bins.  

To examine t h e  s p a t i a l  and temporal s t r u c t u r e  c f  t h e  r a ’ n  f j e l d  

A design i s  v a r i o u s  sampl ing designs have been used f o r  t h e  sampling. 

d e s c r i b e d  by 3 i n d i c e s  (n,k, l) .  

f requency i n  t i m e  and t h e  l a t t e r  two ( k , l )  sampl ing f requenc ies  i n  t h e  eas t  

-west ( x )  and no r th -sou th  (y) d i r e c t i o n  i n  space r e s p e c t i v e l y .  Fo r  

example, t h e  des ign  (l,lO,lO) denotes sampl ing c o n t i n u o u s l y  i n  t i m e  

( i .e. a l l  15 m i n u t e  scans) b u t  sampl ing s p a t i a l l y  o n l y  every t e n t h  

p i x e l  (40 km a p a r t )  i n  t h e  x and y d i r e c t i o n .  T h i s  mimics t h e  

sampl ing by a ra ingauge network t h a t  c o n t i n u o u s l y  measures t h e  r a i n r a t e  

w i t h  gauges p l a c e d  40 kms apar t .  

a t  an i n s t a n c e ,  b u t  t h e  t i m e  observat ions a r e  taken  o n l y  every 12 h r s  (48 x 

15 minu tes ) .  

board a p o l a r  o r b i t i n g  s a t e l l i t e  which passes t h e  same l o c a t i o n  t w i c e  

p e r  day a t  t h e  same l o c a l  t imes  (e.g., 12 a.m. and 12 p.m.). 

The f i r s t  i ndex  ( n )  denotes sampl ing 

The des ign  (48,1,1) samples a l l  p i x e l s  

T h i s  mimics t h e  sampling by a densely scanning sensor on 
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4. E s t i m a t i o n  procedure 

Once t h e  r a i n r a t e  data a r e  sampled, t h e  parameters o f  t h e  mixed 

d i s t r i b u t i o n  have t o  be est imated. The lognormal d i s t r i b u t i o n  has been 

adopted Much 

research e f f o r t  has been devoted t o  model ing t h e  r a i n r a t e  d i s t r i b u t i o n .  

Lognormal i ty  f o l l o w s  f rom t h e  law o f  p r o p o r t i o n a t e  e f f e c t s  ( A i w n s o n  and 

Brown 1963) and p h y s i c a l  c l o u d  models have been proposed which can 

f o r  t h e  r a i n i n g  p o r t i o n  of t h e  mixed d i s t r i b u t i o n  here. 

.+ 
E 

e x p l a i n  t h e  lognormal d i s t r i b u t i o n  o f  c l o u d  s i z e s  (Lopez 1977). 

S tud ies  u s i n g  t h e  GATE radar  da ta  have shown t h a t  r a i n r a t e s ,  

s i z e  o f  r a d a r  echoes and t h e i r  dura t ions  f o l l o w  lognormal d i s t r i b u t i o n s  

(Houze and Cheng 1977, Houze and B e t t s  1981). 

4.1 Lognormal d i s t r i b u t i o n  

The lognormal d i s t r i b u t i o n  can be w r i t t e n  as: 

f ( r ) =  l / ( r  u 42 exp c - ( l o g  r - p 1 2  /2  02 I , r > o  ( 2 )  

The mean a and var iance f12 o f  t h e  lognormal d i s t r i b u t i o n  a r e  

a = exp ( p + $/z) 

62= exp (2  p + 2) Cexp( 02) - 13 

(see Johnson and Kotz, p. 115, 1970). 

of  t h e  complete mixed d i s t r i b u t i o n  i s  g iven  by 

Consequently, The mean and var iance 

E(R)  = p exp ( p + &z) 
Var(R) = p exp ( 2  p + a2) [exp ( a2) - p 1  

= p a2 [exp( a2) - PI 

A thorough d i s c u s s i o n  o f  t h e  lognormal d i s t r i b u t i o n  i s  g iven  by A i t c h i s o n  

and Brown (1963). 

c 
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4.2 Minimum $ E s t i m a t i o n  

We have grouped t h e  GATE r a i n r a t e  d a t a  i n t o  d i f f e r e n t  r a i n f a l l  

r a t e  ca tegor ies .  The c a t e g o r i e s  are 0-1, 1-2, 2-4, 4-6,6-8, 8-10, 10-12, 

12-16, 16-20, and >20 mm/hr. The f i r s t  ca tegory  was chosen because i t  

i s  d i f f i c u l t  t o  d i s t i n g u i s h  non- ra in ing  p i x e l s  and p i x e l s  w i t h  o n l y  a t r a c e  

o f  r a i n  which may be due t o  n o i s e  i n  r a d a r  r e f l e c t i v i t y .  

a t  1 mm/hr has been used i n  e a r l i e r  s t u d i e s  ( A u s t i n  & G e o t i s  1979). 

Because o f  t h i s  t r u n c a t i o n ,  t h e  est imates a r e  s l i g h t l y  l o w e r  (about 2% 

o f  t h e  es t ima ted  mean) than  t h e  means c a l c u l a t e d  d i r e c t l y  even a f t e r  

ad justments have been made. For a lognormal d i s t r i b u t i o n  w i t h  t y p i c a l  

parameters found i n  ou r  s tudy,  t h e  i n t e r v a l  ( 0 , l )  c o n t a i n s  about 10 t o  

15% o f  t h e  r a i n y  p i x e l s .  

Th i s  low c u t o f f  

Minimum c h i  square e s t i m a t i o n  i s  used i n  our  procedure.  T h i s  

procedure i s  a s y m p t o t i c a l l y  equ iva len t  t o  t h e  maximum l i k e l i h o o d  method 

o b t a i n e d  f rom ( 1 )  (Berkson 1980). The $ v a r i a t e  can be w r i t t e n  as: 

where O i l s  a re  t h e  number o f  r a i n  

e i  a r e  t h e  corresponding f requenc 

parameters LI and o . 
The t r u n c a t e d  d i s t r i b u t i o n  

ng p i x e l s  observed i n  t h e  i t h  ca tegory  and 

es f rom a lognormal d i s t r i b u t i o n  w i t h  

RT f o r  R > 1  mm/hr can be w r i t t e n  as: 

and so 



I f  t h e  number o f  r a i n y  p i x e l s  g r e a t e r  t h a n  1 mm/hr i s  N,  t h e n  

where @ i s  t h e  d i s t r i b u t i o n  f u n c t i o n  o f  t h e  s tandard normal d i s t r i b u t i o n .  

S i m i l a r  express ions can be obta ined f o r  t h e  o t h e r  e j l s .  

The x 2 e s t i m a t i o n  procedure can a l s o  shed some l i g h t  on t h e  complex 

s t r u c t u r e  o f  r a i n f a l l .  

f o r  s t a t i s t i c a l l y  dependent da ta  even though t h e  f i t  t o  t h e  d i s t r i b u t i o n  

i s  s t i l l  good (see appendix) .  The dependence o f  t h e  obse rva t i ons  ( O i l s )  

i s  i n t r o d u c e d  i n  t h e  sampl ing process. F o r  t h e  (48,1,1) des ign,  t o o  

much s p a t i a l  dependence may be i n t roduced  w h i l e  f o r  t h e  ( i , i O , i O )  design, 

t o o  much temporal  dependence may be i n t roduced .  

The minimum x 2 va lue  can be i n f l a t e d  or  d e f l a t e d  

4.3 Standard E r r o r  

The expected mean and var iance o f  t h e  mixed lognormal d i s t r i b u t i o n  

a r e  g i v e n  i n  subsec t i on  4.1. R e w r i t i n g  t h e  expected mean as 

E ( R )  = p a ( 4 )  

where o i s  t h e  mean o v e r  t h e  lognormal d i s t r i b u t i o n  ( c o n d i t i o n a l  on r a i n )  

and a = a ( s ). I n  t h i s  case - 8 =( p , u ). S ince p and - e a r e  

a s y m p t o t i c a l l y  independent, i .e., p and 8 become s t a t i s t i c a l l y  independent 

if t h e  number o f  obse rva t i ons  and t h e  number of r a i n f a l l  c a t a g o r i e s  goes t o  

i n f i n i t y ,  t h e  va r iance  o f  E ( R )  can be expressed as a sum of t h e  va r iance  

of  p and a . Consider  t h e  f u n c t i o n a l  

h(P, a ) =  P a 
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I f  p and a are  independent an expansion i n  t h e  form of  a T a y l o r  s e r i e s  g i ves  
f i h  fi  

h(P, = P a + (p-p)  ah/ ap + ( - a ) ah/ aa + ... 
)r 

= p a + (p-p)  a +( '2 - a )p  

and so 

f i b  2 2 f i  Var(p a ) = aovar(i;) + pova r (  a ) 

I f  we c o n s i d e r  t h e  r a i n / n o  r a i n  sequence as t h e  outcome o f  a B e r n o u l l i  t r a i l  

w i t h  success r a t e  p, t h e  va r iance  o f  p can be e s t i m a t e d  as 

v a r ( 6 )  a $(1-;)/m 

The va r iance  o f  a i s  ( A i t c h i s o n  and Brown, p46, 1963) 

Var(  G * G * /m  ( $2 t Y V Z )  

Hence an approximate exp ress ion  f o r  t h e  va r iance  o f  E ( R )  i s  

Var(E(R))  = $* GZ/m ( $2 + $ / 2 )  t @$(l- .$) /m ( 5 )  

i s  n o t  Al though t h e  assumption about t h e  independence o f  p and a 

s t r i c t l y  v a l i d ,  t h i s  express ion prov ides an e s t i m a t e  o f  t h e  s tandard  

e r r o r  which i s  a good approx imat ion t o  sampl ing e r r o r s  o b t i a n e d  f rom 

ensembles o f  d i f f e r e n t  sampl ing designs. 
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5. Resu l ts  

The techn ique o u t l i n e d  i n  sec t ion  4 i s  a p p l i e d  t o  GATE data. 

Tab le  1 summarizes t h e  r e s u l t s  f o r  t h e  sampl ing des ign (8,8,8) f o r  

GATE 1. The x2 va lue  i s  6.74. For 6 degrees o f  freedom, t h e  

2 i s  12. Hence t h e  hypothesis t h a t  t h e  observed h is togram X 6 ,  95% 

can be f i t t e d  by a lognormal d i s t r i b u t i o n  cannot be r e j e c t e d  a t  t h e  95% 

l e v e l .  With p =1.14 and 02=1.05, t h e  mean and var iance o f  t h e  

lognormal d i s t r i b u t i o n  i s  5.28 and 51.5 r e s p e c t i v e l y .  F ig .  1 shows t h e  

observed h is togram f o r  t h e  design (8,8,8) and a f i t  t o  a lognormal 

d i s t r i b u t i o n .  

The GATE da ta  have been sampled by var ious  designs, w i t h  sampl ing 

f requenc ies  o f  1 t o  a few hours i n  t i m e  and 8 t o  40 km i n  space. 

r e s u l t s  f o r  GATE 1 and 2 a re  summarized i n  t a b l e  2. W i t h i n  t h i s  

f requency range n f  sampl ing i n  space and t ime,  t h e  

smal l  and t h e  lognormal d i s t r i b u t i o n  prov ides  a good f i t  t o  t h e  data.  

I t i s  no ted  t h a t  t h e s e  a r e  sample est imates s i n c e  each h is togram i s  b u t  

one r e a l i z a t i o n  o f  a sampl ing design. 

The 

,* values a r e  

5.1 S e n s i t i v i t y  t o  s a t u r a t i o n  a t  h i g h  r a i n r a t e s  

A major  problem assoicated w i t h  pass ive  microwave sensors i s  t h e  

s a t u r a t i o n  a t  h i g h  r a i n r a t e s .  

f r o m  t h e  (8,8,8) design, b u t  w i t h  o n l y  8 c a t e g o r i e s  i n s t e a d  o f  9. 

two heavy r a i n r a t e  c a t e g o r i e s  a r e  combined and t h e  x2 s t a t i s t i c s  

computed. 

A t e s t  was conducted u s i n g  t h e  sample ob ta ined 

The 

The r e s u l t s  f o r  t h e  t w o  r u n  a r e  very s i m i l a r ,  t h e  est imated 

mean r a i n r a t e s  a r e  w i t h i n  5% o f  each other .  S ince o n l y  8 c a t e g o r i e s  a r e  

used, t h e  degrees of freedom a r e  reduced and t h e  95% conf idence l e v e l  i s  

a c c o r d i n g l y  h igher .  Th is  s e n s i t i v i t y  t e s t  serves t o  i l l u s t r a t e  t h e  
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p o s s i b i l i t y  o f  a p p l y i n g  t h i s  method t o  e s t i m a t e  r a i n f a l l  f rom e x i s t i n g  

microwave measurements such as by the E l e c t r i c a l  l y  Scanning 

Microwave Radiometer f l o w n  on board NIMBUS V s i n c e  t h i s  technique i s  

n o t  s e n s i t i v e  t o  t h e  problem o f  s a t u r a t i o n  a t  t h e  h i g h  r a i n r a t e s .  

5.2 Comparison w i t h  Gamma D i s t r i b u t i o n s  

I n  t h i s  subsect ion,  we compare t h e  x2 s t a t i s t i c s  between a 

lognormal and Gamma d i s t r i b u t i o n .  The Gamma d i s t r i b u t i o n  can be w r i t t e n  

a s  

f ( r )  = x a / r ( a ) I- a -1 exp ( - r  a 1, r > ~ ,  a , x > O  

where r (  a ) i s  t h e  Gamma f u n c t i o n .  A procedure as o u t l i n e d  i n  s e c t i o n  

4 was c a r r i e d  o u t  and t h e  r e s u l t s  f o r  lognormal and Gamma d i s t r i b u t i o n  

f o r  some s e l e c t e d  designs a r e  given i n  t a b l e  3. 

d i s t r i b u t i o n  c o n s i s t e n t l y  g i ves  a b e t t e r  f i t  t o  t h e  observed h i s tog ram 

i n  t h e  minimum $ sense. 

exac t  cho ice  o f  t h e  r a i n r a t e  d i s t r i b u t i o n  i s  n o t  c r u c i a l  i n  t h e  e s t i m a t i o n  

s cherne. 

The lognormal 

However as we s h a l l  demonstrate l a t e r ,  t h e  

5.3 S a t e l l i t e  sampl ing 

To mimic t h e  s a t e l l i t e  sampl ing o f  r a i n f a l l  by a p o l a r  o r b i t i n g  

s a t e l l i t e ,  t h e  des ign (48,1,1) i s  a p p l i e d  t o  GATE. T h i s  i s  e q u i v a l e n t  

t o  sampl ing a t  rough ly  12 hour i n t e r v a l s .  

a r e  p e r i o d s  when obse rva t i ons  a r e  miss ing.  

snap shots  i n  t h e  sequence, pay ing no a t t e n t i o n  t o  m i s s i n g  pe r iods .  

Hence n o t  a l l  samples a r e  a t  i n t e r v a l s  o f  12 hours. 

sample es t ima tes  f rom t h e  designs (24,1,1), (72,1,1) and (96,1,1), i.e., 

sampl ing a t  i n t e r v a l s  o f  6, 18 and 24 hours a r e  made f o r  GATE 1 and 2. 

W i t h i n  t h e  GATE per iod,  t h e r e  

T h i s  des ign  samples eve ry  48 

As a comparison, 
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The r e s u l t s  a r e  summarized i n  t a b l e  4. 

l a r g e ,  p robab ly  due t o  over-sampl ing i n  space and inadequate sampl ing 

i n  t ime,  t h e  es t ima ted  r a i n r a t e s  are q u i t e  c l o s e  t o  t h e  a c t u a l  mean 

va lues o f  0.45 and 0.37 f o r  GATE 1 and GATE 2. 

A l though t h e  x2 values a re  

Since t h e  des ign  (48,1,1) samples every 48 th  snap shot ,  

48 d i s t i n c t  es t ima tes  f r o m  t h i s  design can be r e a l i z e d ;  i.e., t h e  

f i r s t  e s t i m a t e  i s  d e r i v e d  fo rm sampl ing t h e  l s t ,  49th,  97th,  ..., e t c  

snap shots ,  t h e  second f rom t h e  Znd, 50th,  98th,.. .,and so on t o  t h e  

48 th  est imate.  The es t ima ted  means f rom these  sample designs form a 

sample d i s t r i b u t i o n .  

i n  f i g  2 ( l e f t  column). 

d i s t r i b u t i o n s  a re  computed and i n d i c a t e d  i n  t h e  f i g u r e s .  

be no ted  t h a t  t h e  menbers o f  t h e  sampl ing emsemble a re  no t  independent.  

The h i s tog ram o f  t hese  es t ima ted  means a r e  shown 

The means and s tandard d e v i a t i o n s  o f  t hese  

It shou ld  

I f  t h e  l o c a l  d i u r n a l  c y c l e  can be desc r ibed  e n t i r e l y  i n  terms o f  t h e  

f i r s t  harmonic, sampl ing t w i c e  a day a t  12 hours i n t e r v a l s  i s  s u f f i c i e n t  

t o  s p e c i f y  t h e  d i u r n a l  c y c l e .  However any h i g h e r  harmonics would 

i n t r o d u c e d  a b ias.  I t  i s  t h e r e f o r e  o f  i n t e r e s t  t o  examine t h e  sampl ing 

e r r o r s  assoc ia ted  w i t h  sampl ing f requencies s l i g h t l y  l e s s  t h a n  12 hours 

S O  t h a t  t h e  d i u r n a l  c y c l e  i s  sampled th rough  t h e  course o f  about a month. 

A un ique  f e a t u r e  assoc ia ted  w i t h  t h e  proposed T r o p i c a l  R a i n f a l l  

Measur ing M iss ion  (Theon -- e t  a l ,  1986) i s  a r e v i s i t i n g  t i m e  o f  t h e  

s a t e l l i t e  every r o u g h l y  10 hours,  g i v i n g  a t o t a l  o f  about 80 p a r t i a l  v i s i t s  

(30 complete v iews)  o f  a 600 by 600 kn? g r i d  box. 

by t h e  sampl ing des ign o f  (40,1,1). 

t h a n  30 complete v i s i t s  p e r  month. 

i t  w i l l  sample th rough  t h e  d i u r n a l  c y c l e .  

We mimic t h i s  s t r a t e g y  

T h i s  des ign  w i l l  a c t u a l l y  g i v e  more 

The i m p o r t a n t  p o i n t  he re  i s  t h a t  

The h is tograms f o r  t h e  40 
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es t ima ted  means a re  g i v e n  i n  f i g .  2 (m idd le  column). 

i n  t h e  s tandard  d e v i a t i o n  o f  t h e  est imated means of  t h e  (40,1,1) design 

compared t o  t h e  (48,1,1) design even t h e  number o f  es t ima ted  means i s  l e s s  

i n  t h e  former case. 

There i s  a r e d u c t i o n  

5.4 Network Sampl i ng 

To mimic t h e  sampl ing by a network o f  gauges, t h e  r a i n r a t e s  i n  GATE 1 

and 2 a r e  sampl ied by t h e  (l,lO,lO) design. 

desc r ibed  i n  s e c t i o n  5.2, 100 samples a re  ob ta ined  f rom t h e  (l,lO,lO) design. 

The 100 d i f f e r e n t  samples a r e  ob ta ined  by sampl ing which s t a r t s  a t  d i f f e r e n t  

l o c a t i o n s  i n  space. From t h e  100 sample es t ima tes  o f  t h e  r a i n f a l l  

r a t e s ,  t h e  sample means f o r  GATE 1 and 2 a r e  0.446 and 0.367 inn/hr and 

t h e  s.d.s a r e  2.6% and 2.2% o f  t h e  means r e s p e c t i v e l y .  

o f  t h e  es t ima ted  r a i n f a l l  r a t e s  are t e s t e d  by u s i n g  a minimum 

t e s t  s i m i l a r  t o  t h a t  desc r ibed  i n  s e c t i o n  4.2. The es t ima ted  r a i n f a l l  

r a t e s  a r e  d i v i d e d  i n t o  10 equal i n t e r v a l  c a t e g o r i e s  and t h e  x2 values 

a r e  computed t o  be 4.9 and 7.2 r e s p e c t i v e l y  f o r  GATE 1 and 2 compared t o  

S i m i l a r  t o  t h e  procedure 

The n o r m a l i t y  

~2 

xf  95'14. The hypotheses o f  n o r m a l i t y  t h e r e f o r e  must be 
9 .  

accepted a t  t h e  95% l e v e l .  
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6. C o r r e l a t i o n s  and analyses o f  var iance 

I n  e s t i m a t i n g  t h e  s tandard  e r r o r ,  t h e  independence o f  p and a i s  

assumed. 

c o r r e l a t i o n  between t h e  mean r a i n r a t e  c o n d i t i o n a l  on r a i n  ( a ) and p 

f o r  each o f  t h e  15 m inu te  observat ions.  

o f  p i x e l s  w i t h  r a i n  r a t e  i n  excess o f  1 mrn/hr t o  t h e  t o t a l  number of  p i x e l s .  

T h i s  assumption can be examined by c o n s i d e r i n g  t h e  

p i s  c a l c u l a t e d  as t h e  pe rcen t  

a i s  c a l c u l a t e d  as R/p and t h e  c o n d i t i o n  o f  p=O i s  n o t  cons ide rd  i n  

t h e  c a l c u l a t i o n .  

The l i n e a r  c o r r e l a t i o n  between C  ̂ and p i s  0.58 (0.52) whereas 

t h a t  between p and R i s  0.94 (0.94) f o r  GATE 1 (2 ) .  S i m i l a r  r e l a t i o n s  

a r e  a l s o  found i n  t h e  GATE 3 da ta  (Love joy  1982). The c o r r e l a t i o n  

c o e f f i c i e n t s  between t h e  l o g a r i t h m  o f  t h e  q u a n t i t i e s  a re  h i g h e r .  The 

r e s u l t s  a r e  summarized i n  f i g .  3 which shows t h e  s c a t t e r  diagrams between 

t h e  t h r e e  q u a n t i t i e s .  

l o g  R i s  0.99 f o r  b o t h  GATE 1 and 2 whereas t h a t  between l o g  c and l o g  

p i s  0.63 and 0.51 r e s p e c t i v e l y  f o r  GATE 1 and 2. 

The c o r r e l a t i o n  c o e f f i c i e n t  between l o g  p and 

The h is tograms o f  R, p and t%. a r e  g i v e n  i n  f i g .  4. The 

Since t h e  v a l u e  o f  p l i e s  between d i s t r i b u t i o n  o f  p i s  skewed. 

0 and 1, a f i t  t o  a be ta  d i s t r i b u t i o n  may be approp r ia te .  

p r o b a b i l i t y  t h a t  t h e  whole o f  GATE area i s  t o t a l l y  covered w i t h  r a i n .  

Obvious ly ,  t h e  parameters o f  t h e  d i s t r i b u t i o n  a r e  dependent on t h e  s i z e  

of t h e  area. Chiu and Kedem (1986) examined t h e  f r a c t i o n a l  area f o r  an area 

o f  about  40 by 40 km2 u s i n g  t h e  same GATE data. 

a r e  t i m e s  when t h e  s m a l l e r  area (40 by 40 km2) a r e  f u l l y  covered. 

There a r e  t imes when t h e  GATE area i s  t o t a l l y  r a i n  f r e e  f o r  

a c u t o f f  o f  1 mm/hr. I f  a l ower  c u t o f f  i s  used, e.g. 0 mm/hr, t h e  

There i s  z e r o  

I n  t h i s  i ns tance ,  t h e r e  
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f r a c t i o n a l  r a i n  f r e e  t i m e  i s  acco rd ing l y  reduced. 

We a l s o  examined t h e  c o n t r i b u t i o n  o f  va r iance  of  p and & t o  

t h a t  o f  R. I f  we t a k e  t h e  l o g a r i t h m  o f  t h e  equa t ion  
- 
R (mm/r)= p a (mmlhr) 

we get  

l o g F  = l o g  p + l o g  u 

t h e  va r iance  o f  which i s  

va r (1og  K) = v a r  ( l o g  p )  + va r  ( l o g  o ) + 2 cov ( l o g  p l o g  a ) 

( 7 7 % )  (2%)  (21%)  GATE 1 
(78%) (2%)  (20%) GATE 2 

The c o n t r i b u t i o n s  by each t e r m  a re  g i ven  i n  pa ren thes i s  f o r  GATE 1 and 2. 

It can be seen t h a t  t h e  va r iance  o f  l o g  p domi nates t h e  va r iance  i n  l o g  T. 
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7. Discuss ions and Conclusions 

I t  i s  demonstrated t h a t  t h e  mixed d i s t r i b u t i o n  model p rov ides  a 

good es t imate  o f  t i m e  mean a r e a l  average r a i n f a l l  a t  l e a s t  f o r  GATE t y p e  

s i t u a t i o n s .  The advantage o f  t h i s  model i s  i t s  s i m p l i c i t y .  Once t h e  

r a i n r a t e s  a r e  sampled, t h e  parameters can r e a d i l y  be est imated. 

The m i  xed d i s t r i b u t i o n  approach suggests a r e t r i e v a l  a1 g o r i  thm 

I f  a f u n c t i o n a l  f o r  t h e  e s t i m a t i o n  o f  monthly r a i n f a l l  f rom s a t e l l i t e s .  

re1 a t  i on e x i s t s  between r a i  n f  a1 1 r a t e s  and r a d i  ance measurements, such as 

t h a t  proposed by W i l h e i t  -- e t  a1 (1977) ,  one would then accumulate t h e  

rad iance measurements and compute histograms o f  rad iance f o r  t h e  month. 

The h is togram i n  rad iance i s  then t ransformed i n t o  r a i n f a l l  r a t e s  by t h e  

r a d i a n c e - r a i n f a l l  r a t e  r e l a t i o n .  The parameters o f  t h e  lognormal d i s t r i b u t i o n  

o f  t h e  r e s u l t a n t  r a i n f a l l  r a t e  h is togram i s  then es t imated t o  get t h e  

mean and var iance. Cons idera t ion  must be g iven t o  o t h e r  f a c t o r s  such as 

beam f i l l i n g  and t h e  v a r i a t i o n  o f  p i x e l  s i z e  as a f u n c t i o n  of beam p o s i t i o n .  

To mimic s a t e l l i t e  and r a i n  gauge network sampling, var ious  samp i n g  

des igns have been devised. 

by a p o l a r  o r b i t i n g  s a t e l l i t e  ((48,1,1) des ign) .  

a r e  reduced t o  about 5% f o r  a s a t e l l i t e  o b s e r v a t i o n  a t  low i n c l i n a t i o n  

The sampling e r r o r s  a r e  about 10% f o r  sampl ng 

The sampl ing e r r o r s  

((40,1,1) design).  McConnell & Nor th (1987, t h i s  i s s u e )  examine sampl ing 

e r r o r s  f o r  f o u r  r a i n r a t e  ca tegor ies  which c o n t r i b u t e  about e q u a l l y  t o  t h e  

t o t a l  r a i n f a l l  f o r  sampl ing every 6a minutes o f  t h e  same data. They 

found t h a t  t h e  sampl ing e r r o r s  i n  each o f  t h e  r a i n r a t e  c a t e g o r i e s  a r e  about 

10%. I f  t h e  c a t e g o r i e s  a r e  independent, t h e  e r r o r  in t h e  t o t a l  i s  reduced 

by J 4 ,  which i s  c o n s i s t e n t  w i t h  the 5% e r r o r  found i n  t h i s  study. 
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We found a very s t r o n g  c o r r e l a t i o n  between t h e  average r a i n f a l l  

r a t e  and t h e  f r a c t i o n a l  r a i n  area i n  t h e  GATE area. 

had examined t h e  use fu lness  o f  t h e  f r a c t i o n a l  area w i t h  r a i n r a t e s  i n  excess 

o f  20 mm/hr t o  e s t i m a t e  t o t a l  r a i n  volume. The h i g h  c u t o f f  mimics t h e  c l o u d  

index  o f  A r k i n  (1979) t o  d e l i n e a t e  f r a c t i o n a l  h i g h  c l o u d  area. They 

found t h a t  t h e  f r a c t i o n a l  l i g h t  r a i n  ( r a i n r a t e s  g r e a t e r  t h a n  1 mm/hr) 

area g ives a b e t t e r  model t h a n  t h a t  whicc uses t h e  f r a c t i o n a l  heavy r a i n  area 

( r a i n r a t e s  g r e a t e r  than 20 mmlhr) alone. 

used together ,  a much b e t t e r  model i s  obtained. 

Chiu & Kedem (1986) 

But  when t h e  two v a r i a b l e s  a r e  

Jackson (1986) found t h a t  the monthly t o t a l  r a i n f a l l  i n  some t r o p i c a l  

s t a t i o n s  i s  s t r o n g l y  r e l a t e d  t o  the number o f  ra indays b u t  bears l i t t l e  

l i t t l e  r e l a t i o n  t o  t h e  average d a i l y  i n t e n s i t y .  A f a i r  amount o f  s k i l l  

has been achieved i n  t h e  p r e d i c t i o n  o f  r a i n  amount by t h e  r a i n  area as 

dep ic ted  i n  s a t e l l i t e  v i s i b l e  and i n f r a r e d  imager ies (Lovejoy & A u s t i n  

1979). 

Time I n t e g r a l "  ( A T I )  i s  a use fu  i n d i c a t o r  o f  r a i n  volume (Lopez 1982, 

Doneaud -- e t  a1 . 1982a). Doneaud e t  a1 (1982b) have a p p l i e d  t h e  i d e a  t o  

r a i n  gauge measurements. They a so found t h a t  t h e  percent  o f  t i m e  when 

i t  r a i n s  i s  s i g n i f i c a n t l y  r e l a t e d  t o  t h e  t o t a l  r a i n f a l l .  These a r e  

c o n s i s t e n t  w i t h  our  f i n d i n g s  o f  the impor tance of t h e  parameter 

p. 

t h e  es t imated  p i s  e q u i v a l e n t  t o  the ATI .  

techn ique by t h e  mixed d i s t r i b u t i o n  would be d e r i v e d  f rom a knowledge o f  

t h e  d i s t r i b u t i o n  o f  t h e  r a i n r a t e s  a c o n d i t i o n a l  on r a i n .  It p r o v i d e s  

Radar m e t e o r o l o g i s t s  have a l s o  found t h a t  t h e  s o  c a l l e d  "Area 

I f  we cons ider  a des ign which samples a l l  p i x e l s  i n  t i m e  and space, 

The improvement o v e r  t h e  AT1 
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an e s t i m a t e  o f  t h e  average r a i n r a t e  i n t e n s i t y  which rep laces  t h e  

c l i m a t o l o g i c a l  average o f t e n  used i n  r a i n  t o t a l  est imates.  

The impor tance o f  t h e  f r a c t i o n a l  r a i n  area i n  r a i n f a l l  e s t i m a t i o n  

has s t r o n g  i m p l i c a t i o n s  on sate1 l i t e  r a i n f a l l  mon i to r i ng .  

a b s o r p t i o n  p r o p e r t i e s  o f  ra ind rops ,  microwave sensors can c l e a r l y  

d i s t i n g u i s h  between r a i n y  and non r a i n y  areas. T h i s  s p e c i a l  f e a t u r e  

p o i n t s  t o  t h e  need o f  microwave sensors, e i t h e r  a c t i v e  or passive,  i n  t h e  

remote sens ing  o f  r a i n .  

w i t h  measurements f rom geos ta t i ona ry  s a t e l l i t e s  such as GOES, can p r o v i d e  

a c c u r a t e  month ly  mean r a i  n f a l l  measurements. 

Because o f  t h e  

These measurements, when used i n  c o n j u n c t i o n  

Perhaps t h e  most impor tan t  conc lus ion  t h a t  we can draw f rom t h i s  

work i s  t h a t ,  t o  t h e  e x t e n t  t h a t  t he  GATE da ta  a r e  r e p r e s e n t a t i v e  o f  

oceanic  r a i n f a l l  i n  t h e  t r o p i c s ,  r e v i s i t i n g  an area o f  r o u g h l y  t h e  GATE 

dimension (350 by 350 km2) a t  a r e p e t i t i o n  r a t e  o f  about once every 10 

t o  12 hours p rov ides  an e x c e l l e n t  es t ima te  ( o f  t h e  o r d e r  o f  5 t o  10% sampl ing 

e r r o r )  f o r  t h e  area average t h r e e  week mean r a i n r a t e  f o r  t h e  reg ion.  

T h i s  i s  w i t h i n  t h e  c a p a b i l i t y  o f  a s i n g l e  space p l a t f o r m  w i t h  scanning 

sensors i n  a low i n c l i n a t i o n  ( t r o p i c a l )  o r b i t .  Th i s  r e s u l t  i s  i n  good 

agreement w i t h  t h e  work o f  Laugh l i n  (1981) who used a r a t h e r  d i f f e r e n t  

(Markov process)  approach b u t  based a l s o  upon t h e  same GATE data. 
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Appendix: Remarks ---- on t h e  use o f  ~2 - f o r  dependent - data 

There i s  ample evidence t h a t  t h e  r a i n r a t e  i s  lognormal ly  

d i s t r i b u t e d  as i l l u s t r a t e d  by t h e  smal l  values i n  ~2 and t h e  e x c e l l e n t  

f i t .  x2 va lue  i s  l a r g e  (even though t h e  est imated parameters 

o b t a i n e d  f rom t h e  minimum c h i  square e s t i a m t i o n  a r e  very s i m i l a r )  i t  i s  

When t h e  

u s u a l l y  assoc ia ted  w i t h  sampl ing designs t h a t  sample t h e  r a i n r a t e  a t  

p o i n t s  i n  t i m e  or space t h a t  are c lose  t o  each o ther .  

t h a t  t h e  f i t  t o  t h e  lognormal d i s t r i b u t i o n  i s  n o t  good, b u t  may suggest 

dependence i n  t h e  sample. Th is  can be understood as fo l lows.  

L e t  

Th is  may no t  mean 

Pi=Oi/N, w i t h  i=1,. . . ,9 ,  and l e t  p i =  E(p i )=e i /N,  where E ( x )  i s  
A 

t h e  expected va lue o f  x. 

and - l = ( l ,  ..., 1 ) '  and put 

D e f i n e  the vec tors  e=(p1, ...,p8)', i = ( $ i ,  ...,p8)' 

- A= d i a g ( l / p l ,  ... , l / p g )  + 1' 1/pg 

then we nave 

( *  1 ,2= E i=?(oi-ei) 2 /ei = N (e - &'A (e - h) 

Assuming t h a t  t h e  r a i n r a t e s  s a t i f i e s  some dependence c o n d i t i o n  (e.g. 

f in i te-dependenceas d iscussed by Anderson 1971, p427) so t h a t  f o r  l a r g e  

N ,  V " ( p  - 3 )  converges t o  a normal d i s t r i b u t i o n ,  

then f o r  s u f f i c i e n t l y  l a r g e  N 

where t h e  z f  are independent x ' ( ~ )  v a r i a b l e s .  

a r e  independent, xi=l f o r  a l l  i and 

square v a r i a b l e  w i t h  8 degrees o f  freedom. 

a r e  dependent, A2 f 1 

If t h e  sampled r a i n r a t e s  

x2 i s  d i s t r i b u t e d  as a c h i -  

But  i f  t h e  sampled r a i n r a t e s  

and ( * )  can be i n f l a t e d  o r  d e f l a t e d  s i n c e  i t s  
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asymptot ic  expected va lue i s  )iZl 8 Xi. 

f rom t h i s  d i s c u s s i o n  i s  t h a t  l a r g e  values o f  (*) may i n d i c a t e  dependence 

d e s p i t e  a p o s s i b l e  p e r f e c t  f i t .  

a p a r t  i n  t i m e  and space, they become reasonably independent and t h e  

d i s t r i b u t i o n  o f  ( * )  i s  c l o s e  t o  a c h i  square d i s t r i b u t i o n  w i t h  8 degrees 

o f  freedom a d j u s t e d  f o r  t h e  number o f  unknown parameters. See a l s o  

Kedem and Slud (1981) who d iscuss a s i m i l a r  q u a d r a t i c  form whose values 

are  i n f l a t e d  due t o  dependence o f  the data.  

The p r a c t i c a l  outcome emerging 

As t h e  r a i n r a t e s  a r e  sampled f u r t h e r  
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Table  1. Results f o r  (8,8,8) sampling 

c la s s  

1-2 

2-4 

4-6 

6-8 

8-10 

10-12 

12-16 

16-20 

>20 

t o t a l  

O i  

453 

590 

325 

207 

116 

60 

82 

52 

80 

1965 

e i  

450 

598 

324 

188 

116 

76 

88 

46 

79 

1965 ~ 2 ~ 6 . 7 4  

p = 1.14, cr2=1.047 

a ~5.28, B2=51.5 
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Table  2: Est imated means, minimum $ and f r a c t i o n  o f  r a i n  f o r  d i f f e r e n t  
desi  gns. 

GATE 1 

n, ( k , U  

2 

4 

6 

8 

10 

GATE 2 

2 

4 

6 

8 

10 

(494) 

.44 
(11.1) 8.3 

(3.7) 8.3 
.44 

.45 
(7.9) 8.3 

.44 
(2.7) 8.3 

.45 
(4.3) 8.3 

.37 
(59.9) 6.8 

.37 
(50.4) 6.9 

.38 
(27.6) 7.0 

.36 
(23.8) 6.8 

.38 
(19.3) 7.1 

(696) 

.44 
(15.3) 8.2 

.44 
(13.9) 8.1 

.43 
(2.9) 8.1 

.44 
(4.9) 8.0 

.45 
(4.5) 8.2 

.36 
(19.8) 6.8 

.36 
(8.4) 6.9 

.37 
(12.1) 6.9 

.34 
(4.9) 6.9 

.31 
(8.5) 7.0 

(898) 

.45 
(4.2) 8.2 

.45 
(3.8) 8.4 

.45 
(3.8) 8.2 

.44 
(6.7) 8.3 

.45 
(5.2) 8.3 

.37 
(36.9) 6.9 

.36 
(23.8) 7.1 

. 39 
(16.9) 7.1 

035 
(17.4) 7.0 

039 
(7.7) 7.2 

(10,10) 

.46 
(2.4) 8.7 

.46 
(9.4) 8.4 

.46 
(2.1) 8.9 

.44 
(7.9) 8.3 

.43 
(3.4) 8.1 

.36 
(10.3) 6.9 

.35 
(9.7) 7.0 

.36 
(18.1) 7.0 

.37 
(9.3) 7.2 

.37 
(5.4) 7.2 

Est imated  r a i n r a t e  i n  mm/hr on top l i n e .  
parentheses.  
r i g h t  hand corner ,  i n  percent .  

Minimum c h i  square va lue i n  
The est imated r a i n  p r o b a b i l i t y ,  p, appeared i n  t h e  lower 
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Table 3. Comparison between gamma and lognormal d i s t r i b u t i o n  f i t  t o  v a r i o u s  
des i  gns 

1 ognormal 

des i  gn n* lJ d x 2  

(30,10,10) 333 1.00 1.16 6.04 

(20,10,10) 456 1.10 1.07 7.76 

(10,10,10) 972 1.09 1.18 3.39 

( 5,10,10) 1976 1.06 1.21 6.80 

(10, 5, 5) 3936 1.12 1.12 8.77 

( 5, 5, 5)  7889 1.11 1.13 16.83 

(10,20,20) 219 1.32 1.00 4.98 

( 5,30,30) 263 1.09 1.41 6.53 

( 5,20,20) 461 1.19 1.07 0.80 

n* i s  t h e  number o f  r a i n i n g  p i x e l s  

U 

0.29 

0.37 

0.30 

0.34 

0.35 

0.35 

0.49 

0.26 

0.41 

Gama 

2 x X 

0.12 5.57 

0.13 12.14 

0.10 13.73 

0.10 32.46 

0.12 44.24 

0.12 85.87 

0.12 12.39 

0.09 4.09 

0.12 7.21 
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Table  4. Comparisons o f  Est imates from sampling designs f o r  GATE 1 and 2. 

GATE I GATE I 1  

des i gn n* p <R> st .e r r  x 2 n* p <R> s t . e r r  x 2 

(24,1,1) 42237 .083 .448 .0079 27.4 30111 -069 -364 -0083 148.1 

(4831,1) 22976 -088 -514 .0119 48.1 14156 .066 .317 -0107 77.4 

(72,1,1) 14533 .086 -457 .0135 20.9 8826 -061 .316 .0141 77.2 

(9631,1) 11622 .089 -572 .0187 22.5 6409 ,058 ,282 -0151 46.7 

n* number o f  r a i n i n g  p i x e l s  



Figures 

1. Histogram o f  r a i n f a l l  r a t e  sampled f rom GATE by t h e  des ign (8,8,8). 

The curve i s  a lognormal f i t  t o  t h e  h is togram w i t h  parameters 

IJ =1.14 and a2=1.05 which a r e  est imated by t h e  method o f  minimum 

c h i  square. 

Histograms o f  t h e  est imated means f rom sampl ing designs o f  (48,1,1), 

(40,1,1) and (l,lO,lO) ( l e f t ,  middle and r i g h t  column r e s p e c t i v e l y )  f o r  

GATE 1 (upper)  and GATE 2 ( lower ) .  The t o t a l  number of samples 

a r e  48,40 and 100 f o r  t h e  t h r e e  designs. 

d e v i a t i o n s  are  i n c l u d e d  i n  t h e  upper r i g h t  hand corners.  

S c a t t e r  diagram o f  t h e  l o g a r i t h m  o f  t h e  average r a i n f a l l  r a t e  (K) 
and f r a c t i o a n l  r a i n  area i n  the GATE area f o r  GATE 1 (upper)  and 

GATE 2 ( lower ) .  A c u t o f f  value o f  1 mm/hr i s  used t o  d i s t i n g u i s h  between 

r a i n y  and d r y  p i x e l s .  

t h e  upper l e f t  hand corners. 

S c a t t e r  diagram of t h e  l o g a r i t h m  o f  average i n t e n s i t y  o f  t h e  r a i n y  p i x e l s  

( a ) and f r a c t i o n a l  r a i n  area ( p )  f o r  GATE 1 (upper)  and GATE 2 ( l o w e r ) .  

2. 

The means and s tandard 

3. 

The c o r r e l a t i o n  c o e f f i c i e n t s  a re  i n d i c a t e d  on 

4. 

The c o r r e l a t i o n  c o e f f i c i e n t s  are i n d i c a t e d  on t h e  upper l e f t  hand corners.  

5. Histograms o f  t h e  average r a i n f a l l  r a t e  (x), f r a c t i o n a l  area ( p )  o v e r  t h e  

GATE area and average i n t e n s i t y  o f  t h e  r a i n y  p i x e l s  ( a ) ( l e f t ,  

m idd le  and r i g h t  columns) f o r  GATE 1 (upper )  and GATE 2 ( lower ) .  

The means and s tandard dev ia t ions  a r e  i n d i c a t e d  on t h e  upper r i g h t  hand 

corners.  The numbers below the means and s tandard d e v i a t i o n s  on t h e  

h is tograms o f  E i n d i c a t e  t h e r e  a r e  1622 (1419) observa t ions  o u t  

1716 (1512) w i t h  p f 0 i n  GATE 1 ( 2 ) .  

o f  
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. .  Attachment C :  m e l d  Simulation Mo- 

A. Simulation of Rain Field m 
In the absence of real rainrate data, it is useful to generate 

artificial data by stochastic models which preserve certain specified 
statistics. Also ,  such a model is very helpful in assessing the 
outcomes of controlled experiments. We have developed such a model 
and intend to use it in the next phase. A source FORTRAN program is 
attached. 

A.l -Stochastic Field Model 

In what follows, we describe a simulation model which generates 
artificial "radar" snapshots of a rain field. 

Our model is made of three parts, one of which is fixed while the 
others move in relation to the fixed part. The three parts are (See 
figure Al.): 

(a) Spatial random rainfield (moving); 

(b) Cloud field (fixed); and 

(c) Moving window (moving). 

This 
and rain fields. 

is a very flexible model which can accommodate any kind of cloud 

Moving Sampling Window 

Fixed Cloud Field 

Moving Random 
Lognormal Rainfield 

This field consists of a spatial moving average with specified 
distribution for its rainrate (in this case lognormal) and specified 
spatial correlation. This is the bottom part and should be thought of 

random field which is being constantly shifted. For as an . . .  



example, we can use a field of the form 

R(i, j )  = exp[y(i, j) + 1.1401 
where 

Y(i, j )  = E(i, j )  + 0.1084[E(i - 1, j )  + E(i + 1, j) 
+ E(i, j - 1) + E(i, j + l)], i, j = 0, kl, k2, . . ., 

where E(i, j )  is white Gaussian noise. In this case, R(i, j )  has a 
lognormal distribution 

A(PR, U2R) 

with parameters 

and 
0 2 R = 1.047 

The coefficient 0.1084 is needed for stationarity requirements. We 
can easily change this model to suit any correlation requirement. 

A . 3  m u d  F i U  

The cloud field covers a certain large area (e.g., GATE area) and 
consists of clouds whose areas are very close to being lognormally 
distributed. It is a fixed field located above the rainfield. The 
"cloudsii are to be thought of as iiholesii or "windows" through which we 
see rain. A t  a given time constant, what we see through a given cloud 
is precisely its content. This content keeps changing since the 
rainfield is moving. 

Here how a cloud is generated in a field of area lo4 pixels. 
Consider, for example, an interval at length 100 from which a point is 
selected at random. From that point, we measure a random length whose 
distribution is lognormal with parameters 1.1, u2. Let X be the p a r t  of 
this length which overlays with the interval (0, 100). Then, by 
properly conditioning X, we have 

is 

The square of this quantity (by independence) can be thought of 

M E number of clouds 

as the average size of a "random cloud." Let 



Then t h e  f r a c t i o n a l  ra iny  a rea  

M x E 2 ( X )  --------- 
104 

lJ 

over a f i e l d  

02 EX M 

of a r e a  lo4 is  given by 

1 

1 

1 

1 

Thus ,  w e  can c o n t r o l  ,he probabi l i ,y  of r a i n  by p, 02, and M. 
The t a b l e  below i l l u s t r a t e s  t h i s  f a c t .  

1 4.208 50 

1 4.208 40 

0.5 3.3899 70 
- .  

2 5.3719 28 

Probability of Rain 

0.088 

0.071 

0.08 

0.08 

The p r o b a b i l i t y  of r a i n  is f ixed over t he  cloud f i e l d  b u t  can 
obviously change f o r  s u b f i e l d s .  

The t r u n c a t i o n  a t ,  say ,  100 is needed f o r  the  ra iny  a rea  under 
s t u d y  i n  r e a l  l i f e  is usual ly  an a r b i t r a r y  a rea  taken from a much 
l a r g e r  a r e a  by t runca t ion .  

A.4 The S w a  W- 

The t h i r d  p a r t  is a moving window which moves a t  random over t h e  
cloud f i e l d .  Each t i m e  t h e  context  of t h e  window is observed, w e  c a l l  
it a snapshot.  

F igure  A2 shows a t y p i c a l  snapshot wi th  a sampling window of 20 x 
20 p i x e l s .  The zeroes  denote  t h e  no r a i n  a r e a s ,  and t h e  r a i n r a t e  a r e  
given i n  mm/hr. 

A.5 -ison with . Vs R e s u l b  

To e s t i m a t e  t h e  e r r o r  i n  s a t e l l i t e  sampling, Laughlin (1982) 
computed t h e  temporal au tocor re l a t ion  func t ion  a s  a func t ion  of 
average a r e a s  using the  GATE da t a .  Since our model parameters a r e  
cons t ra ined  by t h e  GATE observat ions,  a c a l c u l a t i o n  s i m i l a r  t o  
Laughlin The 
results a r e  very s i m i l a r  t o  those of Laughlin, a s  a n t i c i p a t e d .  

was c a r r i e d  o u t  and t h e  results presented on f i g u r e  A3. 
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Fig. A 2 .  A snapshot generated from the simulation model with p = 1.14 
and u2 = 1.047. These values are derived from GATE rainfall 
measurements. 

L A W  4, (1.20. 44.88 

Area of averaging 

\-- 

T i m e -  (.15..minures> 
Fig. A 3 .  Temporal autocorrelation functions for different averaging 
areas. The size of the averaging boxes are indicated on the graph (in 
kms). 
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Program listing to generate Rain fields from the Simulation Model 

C 
C 
C 
c 
C 
C 
c 

C 
c 
C 
C 
C 
C 
C 
C 
c 
f 
C 
c 
C 
C 
C 
C 
C 
C 

C 

N S T F P S  - NUNEEE 9F T I N ?  S T E P S  F C P  l k Y I C H  R A I N  F I E L D S  A P E  

b'CALI-C - hUh'FCP 3F C A L L  T C  3E M P O E  T C  TI-E P P I N F A L L  C A L C U L A T I N G  
T C  € E  C A L C U L A T E 3  

C F C C F A Y  
N - NUNPEE C F  3 C I N T S  TU E A C H  O I F F h S I C h  CF T k E  R A I N F A L L  A F R A Y  
OFSIZE - = I Z E  O F  TL(F S I D E S  Or " I X E L S  IN KY 
G C H A S E  - G 4 T E  FHASE CF T Y F  S I Y U L A T I C h  IhPUT P A R A M E T E Q 5  
AVPCrEA - F V E c 4 G E  A Q E A  9f CCNTISLOUS G A I h  P A T C H E S  
4 V F T G  - 4 V E F P C E  F C " A C T 1 C N  C F  A R E A L I Z P T I C N  T F A T  H A S  R A I N  

I N T E r W A L  : I - L c c D  k h C  /!?PAY I f l !DEX 
SEEC - 4 F F 4 Y  O F  SEEDS F O R  R A h C C W  hU).r!?ER G E N E R A T O P S  T O  P F  

DPSSED T O  SUSROUTZNES I N  CGDEF; T O  L E ' 4 V E  T H E  O S E E 3 0  
A F F A Y S  UNCI-ANGEC 

TIME - C U Q l i L A T I V E  T I M E  OF T H E  R E A L I Z A T I C h  

O U T D U T  : G R  - T k 3 - 0 I ) r E h S T 3 N A L  ARRAY CIF K A I h F A L L  R A T E S  

S U P R C U T I N E I  E K R A T h  - C 4 L C U L A T E S  R A I N F b L L  R I T E  A R R A Y S  AND W R I T E S  
THEM TO T A P E  

20 CCNTINUE 
C A L L  

100 slop 
L E V P T C  (N F I N C I  RR 1 

EN13 

OE POOR QUALITY. 

SUSROUT I NE E K R A I  h (NUP .QES I ZE.G PHASE, C A Y  .T T ME . A V A R E A  * A V F T R  . SEEC. 

I 
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21 C C N T I N U E  

DC! 2 2  I = Z g 2 C 9  

2 4  C O N T I N U E  
2 3  C C h T I N U E  

C 
C G F T  S N P P S H C T S  B'r M r V T h G  THE 1 2 R  BY 128 W I h D C W  C F  C L O U D S  O V E R  T + T  
C M U V I N C  F A I N F I F L C .  T ) - E  A T : V E C T I @ " J  I S  A T C O ~ F L I S t - F D  9 Y  I N C R E M E N T I h S  I 1  
C AYD JJ. THE L A I N  C A T 5  A T  THE 3 3 U U O A R I E S  CF THE CLO1JDS C H A N G F S  V I A  
C T H I S  JC'IhT C Y h A k I C .  Y G I T E  E A C H  S h l A Y S H r 3 T  T C  T A P E  A F T E Q  T T  IS 
C G E N E R A T E C .  

I r=o 
J J=3 
I 1 = 1  
J I = l  
O C  65 h C ! A Y S = l * 2  
I c AY = I c P y + 1 
3PCY ( U h I T = l  

3 c  6 6  h S h P = l * ? 4  

1 e F r D " 2 0 S *  S T 4 T L S = ' N E k  '*FI L E = F I L E L E (  I C 4 Y  
FCR'1= ' U Y F O R V A T T E  T * s 10 I T A  I= I nS) Cr5 CC ESS= ' SEOLENT I A L  * 

I 1 = 1  I +  1 
I I I =  I I+127 
J J= J J+ 1 
JJJ=JJ+127 
D C  70 I = l * I S P  
OC 7 1  J = l * l Z €  
P P ( I s J ) = Y ( I I + I + I l  r J J + J + J l  ) * I V (  I I + I * J J + J )  

71  CCNTXNUE 

C 

C 
c 
C 
C 
c 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
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ABS TRACT 

A stochastic regression model is used in modeling rainrate. 
Under some conditions on the model parameters, it is shown that 
rainrate is asymptotically lognormal. An application of the model 
to the GATE data shows a remarkable agreement between the assumed 
and estimated model parameters for rainrate averaged over suffi- 
ciently large area and a sampling interval of 15 minutes. 

1. INTRODUCTION 

There is ample evidence based on observations that rain 
characteristics tend to be approximately lognormally distributed. 
This observation is shared by quite a few research workers who 
considered different data sets. These pertain to the duration of 
rainfall and amount, and to horizontal and vertical cloud extent 
in tropical and extratropical regions under a wide variety of 
convective conditions (Biondini 1976, Lopez 1977, Houze and Cheng 
1977, Chiu et al. 1986). The question is then what makes the 
lognormal distribution so prevalent when it comes to rain systems 
and whether there is any theoretical basis for these observational 
findings. On practical grounds, we may ask whether at all it 
even makes sense to fit a lognormal distribution to rain 
characteristics and under what conditions. This is the subject of 
the present note. We will focus on the lognormality of rainrate. 

Many authors believe that the lognormal distribution is a 
natural outcome of the so called law of proportionate effect 
(Aitchison and Brown 1963, p .  2 2 ) .  Accordingly, {X.) satis- 
fies the law of proportionate effect if 

J 

where the E I s  are mutually independent and are also independent 

of the X . ' s .  While the law of proportionate effect is o,f funda- 
j 

J 

- 2 -  



D- 3 

mental importance in motivating the lognormal distribution, the 
independence assumption on the t is quite restrictive and can 
in fact be relaxed. It is sufficient that the t 's obey con- 
ditions which guarantee the asymptotic normality of sums in terms 
of these variates. For this to hold, they need not be independent 
and may even be dependent on the X . ' s .  

j 

j 

3 
In the present note, we discuss a certain type of dynamic 

regression model which together with less restrictive conditions, 
yields the lognormality of rainrate asymptotically. The model has 
a strong intuitive appeal and is quite flexible in that it re- 
quires only a few parameters which can be easily estimated from 
data. Using a novel estimation procedure, the model is fitted to 
the GATE (GARP-Global Atmoshperic Research Program-Atlantic 
Tropical Experiment) data. It is shown that some requirements for 
asymptotic lognormality are satisfied by the data. Furthermore 
realizations prodilced by the model appear to be very similar to 
those produced by real rainrate data. 

It should be emphasized that our result is model based and 
that by itself does not constitute a "proof" that rainrate is 
precisely lognormally distributed. We merely provide reasonable 
conditions which lead to lognormality, and indeed some of our 
conditions are well supported by the GATE data. It seems to us 
that the present approach is an improvement over the approach 
which solely relies on the law of proportionate effect. 

2 .  A STOCHASTIC MODEL FOR RAINRATE 

To unravel the lognormal mystery, we begin with a rather 
naive notion of a rain element. Conditional on rain, we conceive 
of a rain element as a small volume in space containing small 
droplets of water which have the following dynamics. Let time be 

discrete. At the n-1 time step, some droplets give rise to a 

- 3 -  
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new generation of droplets through a complicated physical process, 
some droplets leave the volume while new ones, called immigrants, 
arrive to join the folks of the new generation. It is really a 
process of replacement and immigration where the replacement 
refers to droplets already in the volume. The droplets are being 
replaced by a non-negative number of droplets where zero could 
mean complete departure or emigration. Thus at time n, the 
number of droplets in the volume in space is the sum of the ' 

replacement droplets and the immigrants. Let Xn-l stand for the 

(random) number of droplets in the volume at time n-1 and sup- 
pose the ith droplet there is replaced by 
while In denotes the number of immigrants. Then at time n, 
the rain element contains 

Yn,j fresh droplets 

'n- I 

i=l 
xn = 2 Y ~ , ~  + In, n = 1,2 . . .  

droplets with the convention that 2' 0. For (1) to cover dry 

periods and shifts from dry (wet) to wet (dry) periods the follow- 
ing interpretation is adopted. Most of the time when it is not 
raining, the rain element is dry and both Xn and In vanish. 
The rain element becomes active as soon as I, admits a positive 
value. This sets the Xn, and hence the Yn,i, in motion until 

the Xn vanish. The process restarts when I, admits again a 
positive value. can be thought of as the part of the process 
responsible for the occurrence of rain storms whilc per- 
tains to the duration and amount of rain. 

1 

In 
2 Yn,j 

The most important parameters associated with the dynamic 
model (1) are 

i = m, EI, = X ,  n,i = 1 , 2  ... 
No further assumption is needed for the present use of the model 
except for A 1  and A 2  below. 

I. 

- 4 -  
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When the occurrences of rain are not too frequent, we expect 
h to be small and close to zero. When it does rain, it usually 

persists for a while before it stops. This means that m should 

be close to 1 but still strictly less than 1. If m is greater 
than or equal to 1, the duration and amount can be explosive. 
Thus an indication of goodness of fit of (1) to rainrate data is 
small 1 8  and m close to but smaller than unity. It is 
interesting to apply the model to real data to see if these 
conditions are met. 

When {Yn,i}, (I,} are families of mutually independent non- 
negative integer valued random variables, the process (X,} is 
called a Galton-Watson Process with Immigration (Athreya and Ney 
1972, p.263). This type of process was introduced as early as 
1915 by Smoluchowski whose work is reported by Chandrasekhar 
(1943, chapter 3). Smoluchowski used the model to study the fluc- 
tuations in the nunber of particles contained in a small volume 
which exhibit random motion. However, we do not necessarily 
require the Y's and 1's to be independent. 

There is a well known device which transforms (1) into a more 
convenient regression equation which takes into account past 
values of Xn (Heyde and Seneta 1972, Winnicki 1986). Let 7, 
be the a-field generated by the random variables 
( X O ~ X ~ , . . . # X ~ ) ~  and note that 

Define cn by the difference 

and write (1) as 

I. 
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Then {X,) is seen to be a stochastic difference equation where 

is a martingale difference (Lai and Wei 1982); i.e., 'n 
Jn-measureable and E(tnlJn-l) = 0 for every n. An important 

example is the case of independent c n  with mean 0 which is not 
required here. Other than its formal importance as expressed in 
(2), martigale differences follows the Central Limit Theorem 
under quite general conditions. 

c n  
is 

Since Xn refers to the density of droplets in the rain ele- 

ment, it is related to the rainrate. But multiplication of (2) by 

a constant leaves the model intact and we can actually think of 
Xn as representing rainrate. We therefore model rainrate 

dynamics by (2) where Xn admits only non-negative values. 

3. CONTINUITY ASSUMPTION 

In its present form, equation (2) is a fairly general model 

which could represent a wide range of physical and statistical 
processes. In order to ensure the lognormality of X,, some more 

assumptions are needed. 

Let {X,} n = O,l,..., be the stochastic process (2) which 

stands for the rainrate process at a given rain element. Assume 

that the Xo,X1,X2,,.., are readings at time 0, T, 2T, . . . ,  
where the sampling interval T is small. The main assumption we 

shall adhere to is that of continuity: when the sampling interval 
T is sufficiently small we require that, conditional on rain, Xn 

and Xn-l be close to each other as is the case with many contin- 
uous phenomena in nature. This implies that the cn, the "errors", 

are themselves small. For normality we also require the sum of 

squares of the r n  to explode. More precisely, conditional on 

rain (i.e., positive xn's) we assume 

I. 

- 6 -  
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i=l 

Since E(&i/Xi-llTi-l) = 0, and since by A 1  &i/Xi-l is 

essentially bounded as m 4 1 and X _I) 0, it follows that 
(McLeish 1974, Basawa and Prakasa Rao 1980, p.388) 

4. ASYMPTOTIC LOGNORMALITY OF RAINRATE 

Let z[A] be the indicator of the event A, and define 6, 

by 

6, = kn-Xn-J/kn-l + K[Xn-1 = 01) 

Then (2) can be written as 

Thus, conditional on rain, it follows that 

from which we obtain by A1 that 

- 7 -  
I .  
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or 

Therefore for m sufficiently close to 1 and X close to 
and A2 imply that for large n 

(6) 

0, A I  

2 where ~ ( 0 , c  ) denotes the lognormal distriubtion with parameters 
0 and c2 (Aitchinson and Brown 1963). When m 4 1 and A + 0, 
we obtain the useful approximation 

The 0 parameter is expected if we assume that Xn for large n is 
independent of Xo and that the two are identically distributed. 

Under these conditions both XA/” and Xi’” are asymptotically 

( p ,  1/2c2) for some p .  

5. STATISTICAL ESTIMATION OF m and X 

A great deal of the foregoing discussion depends on m being 
close to but strictly smaller than 1, and X positive but close 

to 0. To verify these conditions, the parameters should be 
estimated as precisely as possible. Fortunately, this estimation 

problem is a special case of a general problem investigated in 

detail by Lai and Wei (1982) who give conditions under which the 

- 8 -  
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least squares estimates converge almost surely (that is, with 

probability one. This is abbreviated a.s.) to the respective 

parameters. Winnicki (1986) has suggested that m and h should 
be estimated from the weighted model 

* 
where ,zn 
the en. 
least squares and are shown, under some conditions, to be superior 
to the ordinary least squares when m is close to 1. NOW, the 
Lai and Wei (1982) theory can be applied to the stochastic regres- 

sion model (8) since e n  in (8) is still a martingale difference. 
This is done next. 

en /,/- 1 
by minimizing the sum of squares of * 

The estimates obtained in this way are called weighted 

* 

A -  

and Denote the weighted least squares estimators by m, X 
the design matrix by ZC,. Then 

Define a 2x2  matrix 4 by, 4 I IJL IJn and let Amin(”) and 

Amax(”) 
4. 
as follows, assuming model ( 8 ) .  Assume 

be, respectively, the smaller and larger eigenvalues of 

Then the relevant result of Lai and Wei (1982) can be stated 

. 

I .  

and that 

- 9 -  
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Then 

a.s. 

Thus, when (a) and (b) are satisfied, 
strong sense of convergence of the weighted least squares 
estimates. 

the result guarantees a 

The estimates themselves are given in Winnicki (1986) 
as 

n n x: 
1 A 

- n  xi,l+l C X i  3 xi-l+l 
n 
c Pi-l+l) 2 xi-l+l 

i=l 

2 

- i=l i=l m =  
n 

- n  1 
i=l i=l 

n n Xi-1 
*i Xi 2 xi-1+1 

n n 
c xi-1 3 xi,l+l - 2 

i=l 
n 
c ki-1+1) 2 xi-1+1 

= i=l i=1 i-1 
n 

2 - n  1 
i=1 i=l 

(9) 

where n is the series size. 
Since observed rainrate is finite, condition (a) is auto- 

To verify condition (b) analytically is matically satisfied. 
difficult In general but it can be verified from data. 
rate data we have in mind are described in the next section. 
rainrate averages obtained from squares of 32 by 32 h2 at 15 minute 
Intervals, the results from two different time series are given in 
Table 1. The series size ranges from n-100 to n=1700, and it 

is seen that condition (b) Is satisfied since 

The rain- 
For 

Amin(") tends to 

is now open to the actual estimation of m,A using these data. 

- 10 - 



Table 1. Two cases for which condition (b) is satisfied. The 
rainrate series are sampled every 1 5  minutes over a 
square of 32x32 km’ 

n 

100 
200 
400  
600 
8 0 0  

1000 
1 2 0 0  
1500  
1700  

100 
200 
400  
6 0 0  
800  

1000 
1200 
1500  
1700  

6 . 3 6 8  
5 3 . 9 7 2  

108 .249  
1 4 2 . 7 7 3  
1 5 1 . 5 2 6  
4 2 1 . 2 4 2  
4 3 8 . 3 6 6  
4 7 5 . 9 8 7  
514 .737  

6 6 . 8 5 3  
1 1 7 . 4 3 0  
224 .335  
322 .439  
3 8 9 . 0 4 0  
5 2 6 . 5 6 9  
5 7 6 . 1 4 6  
7 0 6 . 0 0 8  
729 .100  

FIRST TIME SERIES 

9 7 . 2 1 2  
185.318 
351 .806  
533 .428  
722 .730  
9 0 1 . 5 9 0  

1084.106 
1359.853 
1540 .269  

SECOND TIME SERIES 

132.213 
212.229 
4 7 4 . 8 0 1  
6 0 0 . 6 0 0  
732 .568  
945.093 

1094.382 
1363 .871  
1537 .641  

0 . 7 1 9  
0 . 0 9 7  
0 . 0 5 4  
0 . 0 4 4  
0 . 0 4 3  
0 . 0 1 6  
0 . 0 1 6  
0 . 0 1 5  
0 . 0 1 4  

0 . 0 7 3  
0 . 0 4 6  
0 . 0 2 7  
0 . 0 2 0  
0.017 
0.013 
0 . 0 1 2  
0.010 
0.010 

- 11 - 



6. APPLICATION TO GATE DATA 

We applied the model to rainfall data collected during GATE. 
GATE was conducted in the Summer of 1974. 
tri-weekly periods, detailed rainfall measurements from rain 
gauges and radars on an array of research vessels were made over 

an area called the B-Scale. The B-Scale encompasses an area of 
about 400 kms in diameter. Arkell and Hudlow (1977) cornposited 

the radar ship data and presented 15 minutes radar reflectivity 

scan data. Patterson et al. (1979) converted the radar reflec- 

tivity data to rainrates which are binned into 4 by 4 km2 pixels. 
This data set is probably as yet one of the most extensive rain- 
fall measurements made over the oceans. 

During roughly three 

Time series of rainrate for individual pixels (4 by 4 km2 

resolution) and for area averages (10 by 10 pixels or 40 by 40 
km2 ) have been extracted from the first tri-weekly period in GATE 

(called Phase 1). 

the method of weighted least squares described above. 
give the estimated m and h for 10 by 10 pixel arrays and for 
individual pixels situated at the center of the GATE area. 

The parameters of the model are estimated by 

Tables 2-5 

The results for large area averages of 10 by 10 pixels are 
shown in table 2 and 3. 

the GATE area a time series was obtained from which m and h 

are estimated using (9) and (10). The estimated m are very 
close to but less than 1 except for some boundary points where 

there are missing data. 
all in the 10 by 10 pixel array. 

small values except at the boundaries where again the problem of 
missing data is encountered. 
sampled (really visited!) at 

are very satisfactory and so a lognormal fit makes good sense. 

For each 10 by 10 pixel array throughout 

At the four corners, there are no data at 
The 1 field in table 3 shows 

We see that for large area averages 

T = 15 minute intervals the results 

I .  
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For individual pixels ( 4  by 4 km2 ) m is still fairly large 
although not as close to 1 as in the 10 by 10 pixel array case, 
but A is large as seen in tables 4 and 5 respectively. The 
reason for this can be attributed to the sampling interval of 1 5  

minutes: for smaller pixels we need to sample more often than 15 
minutes to achieve similar results. This suggests that the model 
approaches the lognormal limit for large aggregates at the 15 
minute sampling rate, and more generally, that there exists a time 
scale which corresponds to a spatial scale. This dependence of 
the model parameters on the averaging area can be seen very 
clearly from Figures 1 and 2 where m and ;I are given as a 
function of the pixel size (i.e. the averaging area) while the 
sampling interval is fixed at T = 15 minutes. The pixel sizes 
examined are 4 x 4 ,  8 x 8 ,  1 6 x 1 6 ,  2 4 x 2 4 ,  3 2 x 3 2 ,  4 0 x 4 0  and 3 5 2 x 3 5 2  km2. 
We therefore conclude that lognormality of rainrate can already be 
observed fairly closely by averaging over pixels whose area is 
roughly as small as 4 0 x 4 0  km2 where the sampling frequency is 1 5  

minutes. This finding is enhanced by a histogram plot in Figure 3 

derived from about 60000 4 0 x 4 0  km2 GATE pixels. 
plays the distribution of the rainrate areal average on a log- 
arithmic scale. The distribution appears to be fairly symmetric 
in support of the above discussion. 

The figure dis- 

- 13 - 
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Table 2. ESTIMATED m FOR 10 BY 10 PIXEL AVERAGES 
Each number represents estimates f o r  a I O  b y  I O  pixel 
average. The fofal area covers the whole of the GATE 
area. The f o u r  corners confains no data. 

--- .40 .69 .89 .88 .92 .86 .85 .62 --- 
.55 .96 .98 .97 .97 ;94 .93 .96 .96 .70 
.94 .95 .96 .98 .97 .92 .97 .96 .97 .95 
.94 .95 .96 .98 .99 .98 .98 .98 .98 .97 
.94 .97 .98 .98 .99 .99 .99 .99 .99 .98 
.96 .97 .97 .98 .98 .99 .99 .99 .99 .98 
.95 .97 .98 .98 .98 .99 .99 .99 .99 .97 
.97 .97 .98 .98 .99 .99 .99 .98 .98 .96 
.79 .97 .98 .99 .98 .98 .99 .98 .98 .81 
--- .97 .98 .98 .99 .99 .99 .99 99 --- 

Table 3. ESTIMATED LAMBDA FOR 10 BY 10 PIXEL AVERAGES 
Each number represents esfimates for a I O  by I O  pixel 
area average. The area covers the whole of fhe GATE 
area. Data are missing in fhe four corners of GATE. 

--- 
.050 
.031 
.041 
.072 
.086 
.134 
.lo9 
.817 --- 

.077 

.024 

.025 

.073 

.094 

.099 

.092 

.lo6 

.125 
1.124 

.029 

.015 

.045 

.081 

.098 
,096 
.lo1 
.086 
.113 
.212 

.019 
, 0 2 8  
.047 
.071 
. 0 8 0  
.082 
.079 
.098 
.lo9 
.143 

.019 

.029 

.047 

.048 

.057 

.079 
,071 
.078  
.114 
.123 

.019 

.033 

.089 

.055 

.059 

.056 

.061 

.083 

.lo6 

.114 

.028 

.049 

.053 

. 0 7 5  

.065 

.076 

.069 

.loo 

. l o 8  

.164 

.049 .233 

.038 ,074 

. 068  .066 

.084 . 080  

.074 .076 
,073 .076 
. 0 8 6  .083 
.124 ,111 
.140 .1451 
.1671 .502 

--- 
.506 
.086 
.089 
.094 
.115 
.157 
.170 
.350 --- 

- 14 - 



Table 4 .  ESTIMATED m FOR INDIVIDUAL PIXELS. 
Each number represents the est imates f o r  a 4 km b y  4 km 
area average. The total area is 4 0  kms b y  4 0  kms s i t u -  
ated at f h e  c e n f e r  of f h e  GATE area. 

Table 5. ESTIMATED LAMBDA FOR INDIVIDUAL PIXELS. 
Each number represents the e s t imafe  f o r  an individual 
p i x e l .  The total  area covers an area of 4 0  kms b y  4 0  kms 
s i tua ted  at the center of the GATE area. 

. 8 6  . 4 0  .57. . 49  . 6 6  . 5 3  . 8 1  . 6 8  . 7 2  . 4 0  

. 5 0  .38 .57 . 5 2  . 4 3  .57  . 4 8  .88  . 7 5  .60  

. 4 4  . 4 1  .3? . 4 0  .38  . 4 1  . 5 0  .68  1 . 0 5  . 6 0  

.04  . 3 9  . 5 3  . 5 1  . 4 0  . 3 7  .38 . 4 2  . 5 6  .54 

. 8 6  . 5 2  . 6 2  .34 . 3 2  . 2 2  . 3 4  . 6 1  . 5 0  . 7 5  

. 2 8  . 3 9  .57  .38 .39 . 2 1  . 3 7  . 5 0  .53  . 4 5  

. 6 5  .67  . 6 1  . 4 1  .38 .36 .57  . 4 0  .54  . 4 5  

. 8 1  . 5 0  . 47  .37 .33 . 57  .53 .36 . 5 0  .61 

. 2 6  . 4 5  . 6 5  .45 . 4 2  .33 .49 . 4 0  . 5 2  .40 

. 2 4  . 5 2  .39 .47 .37 . 4 6  .60 . 5 6  . 4 1  . 4 5  

- 1 5  - 
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7 .  SIMULATION 

We end this note with a short graphical comparison between 

time series from (1) and a typical time series from the GATE data. 
It should be noted that in the foregoing discussion we made no 
restrictions on the Y ' s  and 1's in (1) except for the requirements 

that they be non-negative integers. In fact (2) is a more general 
model since even this last restriction is removed. Thus, if (1) 
is capable of producing realizations which resemble real rainrate 
data, this shows all the more the adequacy of (2) which is the 
model we used all along in the foregoing discussion. 

NOW, there are many ways to simulate (1). One simple and 
fast way is to take the Y's and 1's as independent Poisson random 
variables with parameters m and A respectively. By this 
process we generated the time series in Figure 5. Figure 4 shows 
a typical time series from GATE which constitutes 100 hours. The 

sudden bursts of rain storms, duration, intensity, decay and inter 
arrival times between storms in the real and simulated 
realizations are quite intriguingly similar. 

- 18 - 
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RAINRATES GAT13 1 40x40 KMS 
I I 

P=.459 

.o 1 1. 100 

RAINRATE ( rnm/hr)  

.ooo 1 

Fiqure 3. A histogram obtained from a large number of 4 0 x 4 0  km2 
GATE pixels. The observations are log-areal averages. 

I G H T E  T I M E  SERIES 

Fiqure 4. 400 observations from a typical GATE time series taken 
I .  

every 15 minutes. The pixel size is 32 km2. 
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15 

1 0  

c 

11 S I M U L A T E D  E A I H  F:ATE 

- - . ... . . .. - 

Figure 5. Realizations from (1). {Yn,i), {In} are independent 
Poisson random variables with parameters m , A  respec- 
tively. 
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SUMMARY 

The puzzling experimental fact that rainrate tends to follow 
a lognormal distribution was explained with the aid of a model. 
Accordingly, under some conditions, as a rain storm develops, 
rainrate tends to follow a lognormal distribution. The conditions 
on the model parameters are shown to be satisfied fairly closely 
by the GATE data for time series which consist of rainrate 
averages over sufficiently large pixels observed every 15 minutes. 
A variant special case of the model is capable of producing reali- 
zations which appear to be very similar to real rainrate time 
series. Another fact is that the eigenvalue conditions necessary 
for the almost sure convergence of the weighted least squares 
estimates are well satisfied by the GATE data. In light of all 
these consistencies it is hoped that the model ( 2 )  can serve In 
settling other intriguing facts about rain. 

Acknowledqement: The Authors wish to express their gratitude to J. 
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